916 research outputs found

    Investigating the Design and Manufacture of PneuNet Actuators as a Prosthetic Tongue for Mimicking Human Deglutition

    Get PDF
    The number of Total Glossectomy cases in the United States is seeing an increasing trend as per the Nationwide Inpatient Sample Database. Patients, who have undergone such aggressive surgical procedures, have extensive limitations performing basic oral functions such as swallowing (deglutition), eating and speaking. Current rehabilitation prostheses do little in restoring the functionality of the original tongue. This is true especially in deglutition, which is necessary to transfer a bolus to the esophagus. Such patients need advanced prosthetic devices and through this research, investigations into potential solutions for prosthetic tongues to aid in deglutition were carried out. The process began with an extensive literature review that provided tongue position, motion, and pressure data during the swallowing stages. Several potential designs were considered such as using linkages and pneumatic networks (PneuNets). Based on a decision matrix, PneuNets were adopted as the foundational basis for generating prosthetic designs. Several prototypes were fabricated using Fused Filament Disposition for mold development and silicone Eco-flex 00-30 for actuator development. Each iteration involved tackling several design and manufacturing challenges especially when scaling these actuators from an initial experiment to an anatomical shape and size of a human tongue. A tongue of dimensions 1.8 inches wide, 2.4 inches long and 0.24 inches thick was developed. The PneuNet actuator was powered by a pneumatic system and kinematic data was collected using a tracking software. The data gathered provided validation comparisons between position trends exhibited in the literature. Theoretical deflection models were generated for analyzing the deflection of the front, middle and back sections of the tongue prototype. Details from literature review, design iterations, simulations, validation processes, research challenges and conclusions will be discussed in depth

    Development of wireless control system for a spherical robot

    Get PDF
    The purpose of this thesis was to develop a control method which can reduce oscillation of lateral motion for a pendulum driven spherical robot operating on flat surface. The spherical robot provides a unique mobility and has several applications in surveillance and entertainment. Controlling a spherical robot is a challenging problem till today due to its nature of kinematics and dynamics. Firstly, its nonholonomic nature prohibits the use of conventional state feedback control laws. Secondly, kinematics of a spherical robot cannot be expressed as a chained-form system to utilize nonholonomic control algorithms. However, various types of nonlinear control algorithms were proposed to settle the problem though none of them provided satisfactory result. The kinematics and dynamics of the pendulum driven spherical robot was investigated followed by linearization for longitudinal and lateral motions through frequency and state space transformation. Moreover, the controllability of the states of the system was maintained during linearization. A robust self-tuning sliding mode con troller which suspends oscillation, maintains desired speed and compensates for unmodeled parameters was developed. The implemented control system consists of control station, prototype robot equipped with on-board microcontroller and sensors, and wireless communication link. Simulation and experimentation were conducted to test peformance of the control laws in suppressing oscillation and maintaining desired speed of the robot. The robot traveled to the commanded trajectory containing straight line and curve with relatively minimum oscillation at desired speed. Thus, the sliding mode control is an effective controller

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Volume 53, Issue 25 - Monday, May 7, 2018

    Get PDF
    The Rose Thorn, Rose-Hulman\u27s independent student newspaper.https://scholar.rose-hulman.edu/rosethorn/2222/thumbnail.jp
    • …
    corecore