802 research outputs found

    Development of a Miniature Pipe Crawler for Application in Fossil Energy Power Plants

    Get PDF
    The power generation of fossil fuel power plants relies on burning coal to generate steam. The heat exchange between the water and burned coal occurs in the combustion chamber, which operates at a high pressure and temperature. Monitoring the integrity of the tubes inside the combustion chamber is a key factor to avoid failures. However, this is not an easy task as some areas are hard to reach and the pipeline commonly has a complex geometry. Moreover, the inspection is typically manual, external and the environment is hazardous for humans. This thesis presents the development and testing of an electrically powered pipe crawler that can navigate inside 5 cm diameter tubes and provide an assessment of their health. The crawler utilizes peristaltic motion within the tubes via interconnected modules for gripping and extending. The modular nature of the system allows it to traverse through straight sections and multiple 90â—¦ and 180â—¦ bends. Additional modules in the system include an ultrasonic sensor for tube thickness measurements, as well as environmental sensors, LiDAR, and a camera. These modules utilize a gear system that allows for 360â—¦ rotation and provide a means of inspecting the entire internal circumference of the tubes

    The development of a robotic endoscope

    Get PDF
    This paper describes the development of a prototype robotic endoscope for gastrointestinal diagnosis and therapy. The goal of this device is to access, in a minimally invasive fashion, the portions of the small intestine that cannot be accessed by conventional endoscopes. This paper describes the macroscopic design and function of the device, and the results of preliminary experiments that validate the concept

    GE Tube Polishing System

    Get PDF
    The goal of this project is to automate the polishing process of brazed or welded areas on a tube assembly supplied by GE Aviation. An end-of-arm-tooling for a Fanuc 200iB was designed and fabricated to manipulate the tube. A work cell layout was determined and part fixtures were developed. A force controlled polishing system was implemented and interfaced with the Fanuc 200iB. Analytical and experimental analyses were conducted to determine the necessary polishing forces. Design considerations were made for future enhancements to the automated tube polishing system

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Design, modelling and control of a brachiating power line inspection robot

    Get PDF
    The inspection of power lines and associated hardware is vital to ensuring the reliability of the transmission and distribution network. The repetitive nature of the inspection tasks present a unique opportunity for the introduction of robotic platforms, which offer the ability to perform more systematic and detailed inspection than traditional methods. This lends itself to improved asset management automation, cost-effectiveness and safety for the operating crew. This dissertation presents the development of a prototype industrial brachiating robot. The robot is mechanically simple and capable of dynamically negotiating obstacles by brachiating. This is an improvement over current robotic platforms, which employ slow, high power static schemes for obstacle negotiation. Mathematical models of the robot were derived to understand the underlying dynamics of the system. These models were then used in the generation of optimal trajectories, using nonlinear optimisation techniques, for brachiating past line hardware. A physical robot was designed and manufactured to validate the brachiation manoeuvre. The robot was designed following classic mechanical design principles, with emphasis on functional design and robustness. System identification was used to capture the plant uncertainty and a feedback controller was designed to track the reference trajectory allowing for energy optimal brachiation swings. Finally, the robot was tested, starting with sub-system testing and ending with testing of a brachiation manoeuvre proving the prospective viability of the robot in an industrial environment

    Biologically inspired perching for aerial robots

    Get PDF
    2021 Spring.Includes bibliographical references.Micro Aerial Vehicles (MAVs) are widely used for various civilian and military applications (e.g., surveillance, search, and monitoring, etc.); however, one critical problem they are facing is the limited airborne time (less than one hour) due to the low aerodynamic efficiency, low energy storage capability, and high energy consumption. To address this problem, mimicking biological flyers to perch onto objects (e.g., walls, power lines, or ceilings) will significantly extend MAVs' functioning time for surveillance or monitoring related tasks. Successful perching for aerial robots, however, is quite challenging as it requires a synergistic integration of mechanical and computational intelligence. Mechanical intelligence means mechanical mechanisms to passively damp out the impact between the robot and the perching object and robustly engage the robot to the perching objects. Computational intelligence means computation algorithms to estimate, plan, and control the robot's motion so that the robot can progressively reduce its speed and adjust its orientation to perch on the objects with a desired velocity and orientation. In this research, a framework for biologically inspired perching is investigated, focusing on both computational and mechanical intelligence. Computational intelligence includes vision-based state estimation and trajectory planning. Unlike traditional flight states such as position and velocity, we leverage a biologically inspired state called time-to-contact (TTC) that represents the remaining time to the perching object at the current flight velocity. A faster and more accurate estimation method based on consecutive images is proposed to estimate TTC. Then a trajectory is planned in TTC space to realize the faster perching while satisfying multiple flight and perching constraints, e.g., maximum velocity, maximum acceleration, and desired contact velocity. For mechanical intelligence, we design, develop, and analyze a novel compliant bistable gripper with two stable states. When the gripper is open, it can close passively by the contact force between the robot and the perching object, eliminating additional actuators or sensors. We also analyze the bistability of the gripper to guide and optimize the design of the gripper. At the end, a customized MAV platform of size 250 mm is designed to combine computational and mechanical intelligence. A Raspberry Pi is used as the onboard computer to do vision-based state estimation and control. Besides, a larger gripper is designed to make the MAV perch on a horizontal rod. Perching experiments using the designed trajectories perform well at activating the bistable gripper to perch while avoiding large impact force which may damage the gripper and the MAV. The research will enable robust perching of MAVs so that they can maintain a desired observation or resting position for long-duration inspection, surveillance, search, and rescue

    Flexible manufacturing system utilizing computer integrated control and modeling

    Get PDF
    In today\u27s fast-automated production, Flexible Manufacturing Systems (FMS) play a very important role by processing a variety of different types of workpieces simultaneously. This study provides valuable information about existing FMS workcells and brings to light a unique concept called Programmable Automation. Another integrated concept of programmable automation that is discussed is the use of two feasibility approaches towards modeling and controlling FMS operations; the most commonly used is programmable logic controllers (PLC), and the other one, which has not yet implemented in many industrial applications is Petri Net controllers (PN). This latter method is a unique powerful technique to study and analyze any production line or any facility, and it can be used in many other applications of automatic control. Programmable Automation uses a processor in conventional metal working machines to perform certain tasks through program instructions. Drilling, milling and chamfering machines are good examples for such automation. Keeping the above issues in concem; this research focuses on other core components that are used in the FMS workcell at New Jersey Institute of Technology, such as; industrial robots, material handling system and finally computer vision

    Concept Development and Testing of an Invessel Articulated Arm for Remote Handling in ASDEX Upgrade- IVAR

    Get PDF

    Magnetic Adhesion in Wall Climbing Robots using varied Electromagnet Arrangements

    Get PDF
    The improvements and innovations in the field of robotics have given a great opportunity to perform tasks that are hazardous for humans to perform. For example, robots can be used for working on high-storied buildings, inspection on ferromagnetic surfaces, painting and maintenance of buildings, surveillance purposes, etc., at the outset, to carry out any operation on vertical surfaces, which may be quite hazardous and time-consuming as well, wall climbing robots (WCRs) can be deployed. The method of adhesion determines the stability of the robot on the wall, be it smooth or coarse. Using magnets to bring about magnetic adhesion would be advantageous when the robot is maneuvered over iron or steel surfaces, typically, to clean boilers, etc., This paper presents the different ways of placements of the magnets, both permanent and electromagnets, in order to introduce adequate magnetic adhesion that would cease the robot from toppling down while encountering an obstacle. This work proposes two methods of arrangement of magnets: square and diamond. Four electromagnets when arranged in array formation with 5000 windings of thin copper coil, generated a magnetic field force of approximately 150 N when 50 A of current is passed. By and large, around 35 N to 40 N is the suction force that would be sufficient to stick the WCR of 2kg on the wall, while using a suction chamber instead of electromagnets. Other methods of placing the magnets such as square and diamond are studied and compared as well using FEMM. Hence arranging the 4 electromagnets in array formation gives an adhesion pressure sufficient to hold and move the WCR, over the vertical wall against gravity
    • …
    corecore