6,485 research outputs found

    Releasing systems for aerospace industry based upon shape memory alloys: Characterization of materials for actuators

    Get PDF
    Releasing and deployment maneuvers carried out during space satellites launching are usually performed by utilizing pyrotechnics loads. However, it is considered convenient to replace this technique by others not requiring explosives (Non Explosive Actuators-NEA). This is mainly due to the necessity of reducing high-shock and vibrations induced levels, also avoiding the contamination of sensible instruments because of dust and gas release during explosion. In addition, the avoidance of risks associated with storage and manipulation of explosives and the possibility of performing device retesting prior to final mounting are desirable qualities. Among NEA devices, those exploiting the singular mechanical behavior of Shape Memory Alloys (SMA) have reached commercial maturity. In this study, the performance of a NEA device that uses the mechanical stress generated upon reverse transformation of a mechanically constrained SMA actuator (constrained recovery effect) to generate the controlled fracture of a notched bolt is analyzed. Firstly, the mechanical components of the system are described, and the main problems associated with its design are introduced. Then, the results of the experimental characterization performed on a NiTi SMA cylindrical tube actuator with 12.7 and 7.8 mm outer and inner diameter respectively, are presented. After an activation stage in which the cylinder is compressed to induce the martensitic phase (or re-orient the existing martensític phase), the temperature is raised while a constant displacement condition is imposed. For temperatures near 120 °C, a loads increment of 35 kN (440 MPa) is obtained. The repetition of this loading-unloading-heating-cooling cycle does not generate any important deterioration in the material response.Fil: Glücksberg, Andrés. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Soul, Hugo Ramon. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yawny, Alejandro Andres. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    A shape memory alloy adaptive tuned vibration absorber: design and implementation

    No full text
    In this paper a tuned vibration absorber (TVA) is realized using shape memory alloy (SMA) elements. The elastic modulus of SMA changes with temperature and this effect is exploited to develop a continuously tunable device.A TVA with beam elements is described, a simple two-degree-of-freedom model developed and the TVA characterized experimentally. The behaviour during continuous heating and cooling is examined and the TVA is seen to be continuously tunable. A change in the tuned frequency of 21.4% is observed between the cold, martensite, and hot, austenite, states. This corresponds to a change in the elastic modulus of about 47.5%, somewhat less than expected.The response time of the SMA TVA is long because of its thermal inertia. However, it is mechanically simple and has a reasonably good performance, despite the tuning parameters depending on the current in a strongly nonlinear way

    A corpus-based lexical and grammatical error identification: L2 learners academic writing

    Get PDF
    Writing in English has never been an easy task to many second language (L2) learners. Many of them perform poorly in their English academic writing where numerous lexical and grammatical errors are found in their report. Therefore, this thesis investigates the difficulties faced by UTHM learners involved in academic writing by identifying and analyzing errors made by them with the application of error analysis procedures. This research attempts to find out the types and patterns of errors in which it focuses on the frequency of the lexical and grammatical errors of the L2 learners in their writing. Errors were investigated and identified based on students’ 36 progress and final reports which were assembled from first year engineering students; named as the Learner Corpus Universiti Tun Hussein Onn Malaysia(LCUTHM). The LCUTHM was analyzed by means of linguistics Natural Language Processing tools (NLP) such as CLAWS 5 tag set, Markin Version 4 and categorized by MonoConc Pro II in the form of word lists. Data were also analyzed using Statistical Package for the Social Science (SPSS) software to determine the major errors learners committed in learners’ written work. The findings reveal that the major lexical and grammatical error categories made by learners were “Missing Word”, “Repetition”, and “Verb Form”. Finally, the integration of technology and the linguistics Natural Language Processing (NLP) tools can provide a fast and more effective method in assisting teachers in identifying errors, and designing syllabus in improving the language skills and achievement of L2 learners in their academic writing

    Geometry-based customization of bending modalities for 3D-printed soft pneumatic actuators

    Get PDF
    In this work, we propose a novel type of 3D-printed soft pneumatic actuator that allows geometry-based customization of bending modalities. While motion in the 3D-space has been achieved for several types of soft actuators, only 2D-bending has been previously modelled and characterized within the scope of 3D-printed soft pneumatic actuators. We developed the first type of 3D-printed soft pneumatic actuator which, by means of the unique feature of customizable cubes at an angle with the longitudinal axis of the structure, is capable of helical motion. Thus, we characterize its mechanical behavior and formulate mathematical and FEA models to validate the experimental results. Variation to the pattern of the inclination angle along the actuator is then demonstrated to allow for complex 3D-bending modalities and the main applications in the fields of object manipulation and wearable robotics are finally discussed

    A Review of Smart Materials in Tactile Actuators for Information Delivery

    Full text link
    As the largest organ in the human body, the skin provides the important sensory channel for humans to receive external stimulations based on touch. By the information perceived through touch, people can feel and guess the properties of objects, like weight, temperature, textures, and motion, etc. In fact, those properties are nerve stimuli to our brain received by different kinds of receptors in the skin. Mechanical, electrical, and thermal stimuli can stimulate these receptors and cause different information to be conveyed through the nerves. Technologies for actuators to provide mechanical, electrical or thermal stimuli have been developed. These include static or vibrational actuation, electrostatic stimulation, focused ultrasound, and more. Smart materials, such as piezoelectric materials, carbon nanotubes, and shape memory alloys, play important roles in providing actuation for tactile sensation. This paper aims to review the background biological knowledge of human tactile sensing, to give an understanding of how we sense and interact with the world through the sense of touch, as well as the conventional and state-of-the-art technologies of tactile actuators for tactile feedback delivery

    Low spring index, large displacement Shape Memory Alloy (SMA) coil actuators for use in macro- and micro-systems

    Get PDF
    Shape memory alloys (SMA) offer unique shape changing characteristics that can be exploited to produce low­ mass, low-bulk, large-stroke actuators. We are investigating the use of low spring index (defined as the ratio of coil diameter to wire diameter) SMA coils for use as actuators in morphing aerospace systems. Specifically, we describe the development and characterization of minimum achievable spring index coiled actuators made from 0.3048 mm (0.012") diameter shape memory alloy (SMA) wire for integration in textile architectures for future compression space suit applications. Production and shape setting of the coiled actuators, as well as experimental test methods, are described. Force, length and voltage relationships for multiple coil actuators are reported and discussed. The actuators exhibit a highly linear (R[superscript 2] < 0.99) relationship between isometric blocking force and coil displacement, which is consistent with current SMA coil models; and SMA coil actuators demonstrate the ability to produce significant linear forces (i.e., greater than 8 N per coil) at strains up to 3x their initial (i.e., fully coiled) length. Discussions of both the potential use of these actuators in future compression space suit designs, and the broader viability of these actuators in both macro- and micro-systems, are presented.United States. National Aeronautics and Space Administration. Office of the Chief Technologist (Space Technology Research Fellowship Grant NNX11AM62H)MIT-Portugal Progra

    Active control of buckling of flexible beams

    Get PDF
    The feasibility of using the rapidly growing technology of the shape memory alloys actuators in actively controlling the buckling of large flexible structures is investigated. The need for such buckling control systems is becoming inevitable as the design trends of large space structures have resulted in the use of structural members that are long, slender, and very flexible. In addition, as these truss members are subjected mainly to longitudinal loading they become susceptible to structural instabilities due to buckling. Proper control of such instabilities is essential to the effective performance of the structures as stable platforms for communication and observation. Mathematical models are presented that simulate the dynamic characteristics of the shape memory actuator, the compressive structural members, and the associated active control system. A closed-loop computer-controlled system is designed, based on the developed mathematical models, and implemented to control the buckling of simple beams. The performance of the computer-controlled system is evaluated experimentally and compared with the theoretical predictions to validate the developed models. The obtained results emphasize the importance of buckling control and suggest the potential of the shape memory actuators as attractive means for controlling structural deformation in a simple and reliable way

    SMA-Based Muscle-Like Actuation in Biologically Inspired Robots: A State of the Art Review

    Get PDF
    New actuation technology in functional or "smart" materials has opened new horizons in robotics actuation systems. Materials such as piezo-electric fiber composites, electro-active polymers and shape memory alloys (SMA) are being investigated as promising alternatives to standard servomotor technology [52]. This paper focuses on the use of SMAs for building muscle-like actuators. SMAs are extremely cheap, easily available commercially and have the advantage of working at low voltages. The use of SMA provides a very interesting alternative to the mechanisms used by conventional actuators. SMAs allow to drastically reduce the size, weight and complexity of robotic systems. In fact, their large force-weight ratio, large life cycles, negligible volume, sensing capability and noise-free operation make possible the use of this technology for building a new class of actuation devices. Nonetheless, high power consumption and low bandwidth limit this technology for certain kind of applications. This presents a challenge that must be addressed from both materials and control perspectives in order to overcome these drawbacks. Here, the latter is tackled. It has been demonstrated that suitable control strategies and proper mechanical arrangements can dramatically improve on SMA performance, mostly in terms of actuation speed and limit cycles
    corecore