462 research outputs found

    Waveform Design for 5G and Beyond

    Get PDF
    5G is envisioned to improve major key performance indicators (KPIs), such as peak data rate, spectral efficiency, power consumption, complexity, connection density, latency, and mobility. This chapter aims to provide a complete picture of the ongoing 5G waveform discussions and overviews the major candidates. It provides a brief description of the waveform and reveals the 5G use cases and waveform design requirements. The chapter presents the main features of cyclic prefix-orthogonal frequency-division multiplexing (CP-OFDM) that is deployed in 4G LTE systems. CP-OFDM is the baseline of the 5G waveform discussions since the performance of a new waveform is usually compared with it. The chapter examines the essential characteristics of the major waveform candidates along with the related advantages and disadvantages. It summarizes and compares the key features of different waveforms.Comment: 22 pages, 21 figures, 2 tables; accepted version (The URL for the final version: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119333142.ch2

    Analysis Framework for Opportunistic Spectrum OFDMA and its Application to the IEEE 802.22 Standard

    Full text link
    We present an analytical model that enables throughput evaluation of Opportunistic Spectrum Orthogonal Frequency Division Multiple Access (OS-OFDMA) networks. The core feature of the model, based on a discrete time Markov chain, is the consideration of different channel and subchannel allocation strategies under different Primary and Secondary user types, traffic and priority levels. The analytical model also assesses the impact of different spectrum sensing strategies on the throughput of OS-OFDMA network. The analysis applies to the IEEE 802.22 standard, to evaluate the impact of two-stage spectrum sensing strategy and varying temporal activity of wireless microphones on the IEEE 802.22 throughput. Our study suggests that OS-OFDMA with subchannel notching and channel bonding could provide almost ten times higher throughput compared with the design without those options, when the activity and density of wireless microphones is very high. Furthermore, we confirm that OS-OFDMA implementation without subchannel notching, used in the IEEE 802.22, is able to support real-time and non-real-time quality of service classes, provided that wireless microphones temporal activity is moderate (with approximately one wireless microphone per 3,000 inhabitants with light urban population density and short duty cycles). Finally, two-stage spectrum sensing option improves OS-OFDMA throughput, provided that the length of spectrum sensing at every stage is optimized using our model

    Channel and noise variance estimation and tracking algorithms for unique-word based single-carrier systems

    Get PDF

    Advanced Channel Estimation Techniques for Multiple-Input Multiple-Output Multi-Carrier Systems in Doubly-Dispersive Channels

    Get PDF
    Flexible numerology of the physical layer has been introduced in the latest release of 5G new radio (NR) and the baseline waveform generation is chosen to be cyclic-prefix based orthogonal frequency division multiplexing (CP-OFDM). Thanks to the narrow subcarrier spacing and low complexity one tap equalization (EQ) of OFDM, it suits well to time-dispersive channels. For the upcoming 5G and beyond use-case scenarios, it is foreseen that the users might experience high mobility conditions. While the frame structure of the 5G NR is designed for long coherence times, the synchronization and channel estimation (CE) procedures are not fully and reliably covered for diverse applications. The research on alternative multi-carrier waveforms has brought up valuable results in terms of spectral efficiency, applications coexistence and flexibility. Nevertheless, the receiver design becomes more challenging for multiple-input multiple-output (MIMO) non-orthogonal multi-carriers because the receiver must deal with multiple dimensions of interference. This thesis aims to deliver accurate pilot-aided estimations of the wireless channel for coherent detection. Considering a MIMO non-orthogonal multi-carrier, e.g. generalized frequency division multiplexing (GFDM), we initially derive the classical and Bayesian estimators for rich multi-path fading channels, where we theoretically assess the choice of pilot design. Moreover, the well time- and frequency-localization of the pilots in non-orthogonal multi-carriers allows to reuse their energy from cyclic-prefix (CP). Taking advantage of this feature, we derive an iterative approach for joint CE and EQ of MIMO systems. Furthermore, exploiting the block-circularity of GFDM, we comprehensively analyze the complexity aspects, and propose a solution for low complexity implementation. Assuming very high mobility use-cases where the channel varies within the symbol duration, further considerations, particularly the channel coherence time must be taken into account. A promising candidate that is fully independent of the multi-carrier choice is unique word (UW) transmission, where the CP of random nature is replaced by a deterministic sequence. This feature, allows per-block synchronization and channel estimation for robust transmission over extremely doubly-dispersive channels. In this thesis, we propose a novel approach to extend the UW-based physical layer design to MIMO systems and we provide an in-depth study of their out-of-band emission, synchronization, CE and EQ procedures. Via theoretical derivations and simulation results, and comparisons with respect to the state-of-the-art CP-OFDM systems, we show that the proposed UW-based frame design facilitates robust transmission over extremely doubly-dispersive channels.:1 Introduction 1 1.1 Multi-Carrier Waveforms 1 1.2 MIMO Systems 3 1.3 Contributions and Thesis Structure 4 1.4 Notations 6 2 State-of-the-art and Fundamentals 9 2.1 Linear Systems and Problem Statement 9 2.2 GFDM Modulation 11 2.3 MIMO Wireless Channel 12 2.4 Classical and Bayesian Channel Estimation in MIMO OFDM Systems 15 2.5 UW-Based Transmission in SISO Systems 17 2.6 Summary 19 3 Channel Estimation for MIMO Non-Orthogonal Waveforms 21 3.1 Classical and Bayesian Channel Estimation in MIMO GFDM Systems 22 3.1.1 MIMO LS Channel Estimation 23 3.1.2 MIMO LMMSE Channel Estimation 24 3.1.3 Simulation Results 25 3.2 Basic Pilot Designs for GFDM Channel Estimation 29 3.2.1 LS/HM Channel Estimation 31 3.2.2 LMMSE Channel Estimation for GFDM 32 3.2.3 Error Characterization 33 3.2.4 Simulation Results 36 3.3 Interference-Free Pilot Insertion for MIMO GFDM Channel Estimation 39 3.3.1 Interference-Free Pilot Insertion 39 3.3.2 Pilot Observation 40 3.3.3 Complexity 41 3.3.4 Simulation Results 41 3.4 Bayesian Pilot- and CP-aided Channel Estimation in MIMO NonOrthogonal Multi-Carriers 45 3.4.1 Review on System Model 46 3.4.2 Single-Input-Single-Output Systems 47 3.4.3 Extension to MIMO 50 3.4.4 Application to GFDM 51 3.4.5 Joint Channel Estimation and Equalization via LMMSE Parallel Interference Cancellation 57 3.4.6 Complexity Analysis 61 3.4.7 Simulation Results 61 3.5 Pilot- and CP-aided Channel Estimation in Time-Varying Scenarios 67 3.5.1 Adaptive Filtering based on Wiener-Hopf Approac 68 3.5.2 Simulation Results 69 3.6 Summary 72 4 Design of UW-Based Transmission for MIMO Multi-Carriers 73 4.1 Frame Design, Efficiency and Overhead Analysis 74 4.1.1 Illustrative Scenario 74 4.1.2 CP vs. UW Efficiency Analysis 76 4.1.3 Numerical Results 77 4.2 Sequences for UW and OOB Radiation 78 4.2.1 Orthogonal Polyphase Sequences 79 4.2.2 Waveform Engineering for UW Sequences combined with GFDM 79 4.2.3 Simulation Results for OOB Emission of UW-GFDM 81 4.3 Synchronization 82 4.3.1 Transmission over a Centralized MIMO Wireless Channel 82 4.3.2 Coarse Time Acquisition 83 4.3.3 CFO Estimation and Removal 85 4.3.4 Fine Time Acquisition 86 4.3.5 Simulation Results 88 4.4 Channel Estimation 92 4.4.1 MIMO UW-based LMMSE CE 92 4.4.2 Adaptive Filtering 93 4.4.3 Circular UW Transmission 94 4.4.4 Simulation Results 95 4.5 Equalization with Imperfect Channel Knowledge 96 4.5.1 UW-Free Equalization 97 4.5.2 Simulation Results 99 4.6 Summary 102 5 Conclusions and Perspectives 103 5.1 Main Outcomes in Short 103 5.2 Open Challenges 105 A Complementary Materials 107 A.1 Linear Algebra Identities 107 A.2 Proof of lower triangular Toeplitz channel matrix being defective 108 A.3 Calculation of noise-plus-interference covariance matrix for Pilot- and CPaided CE 108 A.4 Bock diagonalization of the effective channel for GFDM 109 A.5 Detailed complexity analysis of Sec. 3.4 109 A.6 CRLB derivations for the pdf (4.24) 113 A.7 Proof that (4.45) emulates a circular CIR at the receiver 11
    corecore