2,547 research outputs found

    Understanding and Improving Locomotion: The Simultaneous Optimization of Motion and Morphology in Legged Robots

    Full text link
    There exist many open design questions in the field of legged robotics. Should leg extension and retraction occur with a knee or a prismatic joint? Will adding a compliant ankle lead to improved energetics compared to a point foot? Should quadrupeds have a flexible or a rigid spine? Should elastic elements in the actuation be placed in parallel or in series with the motors? Though these questions may seem basic, they are fundamentally difficult to approach. A robot with either discrete choice will likely need very different components and use very different motion to perform at its best. To make a fair comparison between two design variations, roboticists need to ask, is the best version of a robot with a discrete morphological variation better than the best version of a robot with the other variation? In this dissertation, I propose to answer these type of questions using an optimization based approach. Using numerical algorithms, I let a computer determine the best possible motion and best set of parameters for each design variation in order to be able to compare the best instance of each variation against each other. I developed and implemented that methodology to explore three primary robotic design questions. In the first, I asked if parallel or series elastic actuation is the more energetically economical choice for a legged robot. Looking at a variety of force and energy based cost functions, I mapped the optimal motion cost landscape as a function of configurable parameters in the hoppers. In the best case, the series configuration was more economical for an energy based cost function, and the parallel configuration was better for a force based cost function. I then took this work a step further and included the configurable parameters directly within the optimization on a model with gear friction. I found, for the most realistic cost function, the electrical work, that series was the better choice when the majority of the transmission was handled by a low-friction rotary-to-linear transmission. In the second design question, I extended this analysis to a two-dimensional monoped moving at a forward velocity with either parallel or series elastic actuation at the hip and leg. In general it was best to have a parallel elastic actuator at the hip, and a series elastic actuator at the leg. In the third design question, I asked if there is an energetic benefit to having an articulated spinal joint instead of a rigid spinal joint in a quadrupedal legged robot. I found that the answer was gait dependent. For symmetrical gaits, such as walking and trotting, the rigid and articulated spine models have similar energetic economy. For asymmetrical gaits, such as bounding and galloping, the articulated spine led to significant energy savings at high speeds. The combination of the above studies readily presents a methodology for simultaneously optimizing for motion and morphology in legged robots. Aside from giving insight into these specific design questions, the technique can also be extended to a variety of other design questions. The explorations in turn inform future hardware development by roboticists and help explain why animals in nature move in the ways that they do.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144074/1/yevyes_1.pd

    A Review of Smart Materials in Tactile Actuators for Information Delivery

    Full text link
    As the largest organ in the human body, the skin provides the important sensory channel for humans to receive external stimulations based on touch. By the information perceived through touch, people can feel and guess the properties of objects, like weight, temperature, textures, and motion, etc. In fact, those properties are nerve stimuli to our brain received by different kinds of receptors in the skin. Mechanical, electrical, and thermal stimuli can stimulate these receptors and cause different information to be conveyed through the nerves. Technologies for actuators to provide mechanical, electrical or thermal stimuli have been developed. These include static or vibrational actuation, electrostatic stimulation, focused ultrasound, and more. Smart materials, such as piezoelectric materials, carbon nanotubes, and shape memory alloys, play important roles in providing actuation for tactile sensation. This paper aims to review the background biological knowledge of human tactile sensing, to give an understanding of how we sense and interact with the world through the sense of touch, as well as the conventional and state-of-the-art technologies of tactile actuators for tactile feedback delivery

    Design and fabrication of a planar three-DOFs MEMS-based manipulator

    Get PDF
    This paper presents the design, modeling, and fabrication of a planar three-degrees-of-freedom parallel kinematic manipulator, fabricated with a simple two-mask process in conventional highly doped single-crystalline silicon (SCS) wafers (100). The manipulator’s purpose is to provide accurate and stable positioning of a small sample (10 × 20 × 0.2 μm3), e.g., within a transmission electron microscope. The manipulator design is based on the principles of exact constraint design, resulting in a high actuation-compliance combined with a relatively high suspension stiffness. A modal analysis shows that the fourth vibration mode frequency is at least a factor 11 higher than the first three actuation-related mode frequencies. The comb-drive actuators are modeled in combination with the shuttle suspensions gaining insight into the side and rotational pull-in stability conditions. The two-mask fabrication process enables high-aspect-ratio structures, combined with electrical trench insulation. Trench insulation allows structures in conventional wafers to be mechanically connected while being electrically insulated from each other. Device characterization shows high linearity of displacement wrt voltage squared over ±10 μm stroke in the x- and y-directions and ±2◦ rotation at a maximum of 50 V driving voltage. Out-of-plane displacement crosstalk due to in-plane actuation in resonance is measured to be less than 20 pm. The hysteresis in SCS, measured using white light interferometry, is shown to be extremely small
    corecore