39,382 research outputs found

    System Test of the ATLAS Muon Spectrometer in the H8 Beam at the CERN SPS

    Get PDF
    An extensive system test of the ATLAS muon spectrometer has been performed in the H8 beam line at the CERN SPS during the last four years. This spectrometer will use pressurized Monitored Drift Tube (MDT) chambers and Cathode Strip Chambers (CSC) for precision tracking, Resistive Plate Chambers (RPCs) for triggering in the barrel and Thin Gap Chambers (TGCs) for triggering in the end-cap region. The test set-up emulates one projective tower of the barrel (six MDT chambers and six RPCs) and one end-cap octant (six MDT chambers, A CSC and three TGCs). The barrel and end-cap stands have also been equipped with optical alignment systems, aiming at a relative positioning of the precision chambers in each tower to 30-40 micrometers. In addition to the performance of the detectors and the alignment scheme, many other systems aspects of the ATLAS muon spectrometer have been tested and validated with this setup, such as the mechanical detector integration and installation, the detector control system, the data acquisition, high level trigger software and off-line event reconstruction. Measurements with muon energies ranging from 20 to 300 GeV have allowed measuring the trigger and tracking performance of this set-up, in a configuration very similar to the final spectrometer. A special bunched muon beam with 25 ns bunch spacing, emulating the LHC bunch structure, has been used to study the timing resolution and bunch identification performance of the trigger chambers. The ATLAS first-level trigger chain has been operated with muon trigger signals for the first time

    Comparison of energy-wood and pulpwood thinning systems in young birch stands

    Get PDF
    In early thinnings, a profitable alternative to pulpwood could be to harvest whole trees as energy-wood. In theoretical analyses, we compared the extractible volumes of energy-wood and pulpwood, and their respective gross values in differently aged stands of early birch thinnings at varying intensities of removal. In a parallel field experiment, we compared the productivity at harvest of either pulpwood or energy-wood, and the profitability when the costs of harvesting and forwarding were included. The theoretical analyses showed that the proportion of the total tree biomass removed as pulpwood increased with increasing thinning intensity and stem size. The biomass volume was 1.5–1.7 times larger than the pulpwood volume for a 13.9 diameter at breast height stand and 2.0–3.5 times larger for a 10.4 diameter at breast height stand. In the field experiment, the harvested volume per hectare of energy-wood was almost twice as high as the harvest of pulpwood. The harvesting productivity (trees Productive harvesting Work Time-hour−1) was 205 in the energy-wood and 120 in the pulpwood treatment. The pulpwood treatment generated a net loss, whereas the energy-wood treatment generated a net income, the average difference being €595 ha−1. We conclude that in birch-dominated early thinning stands, at current market prices, harvesting energy-wood is more profitable than harvesting pulpwood

    A double-sided silicon micro-strip super-module for the ATLAS inner detector upgrade in the high-luminosity LHC

    Get PDF
    The ATLAS experiment is a general purpose detector aiming to fully exploit the discovery potential of the Large Hadron Collider (LHC) at CERN. It is foreseen that after several years of successful data-taking, the LHC physics programme will be extended in the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 1034 cm−2 s−1. For ATLAS, an upgrade scenario will imply the complete replacement of its internal tracker, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The current baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module is an integration concept proposed for the strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules are assembled into a low-mass local support structure. An electrical super-module prototype for eight double-sided strip modules has been constructed. The aim is to exercise the multi-module readout chain and to investigate the noise performance of such a system. In this paper, the main components of the current super-module prototype are described and its electrical performance is presented in detail

    Thermo-Hydraulic Characteristics of Inclined Louvered Fins

    Get PDF

    Heat exchanger/reactors (HEX reactors): Concepts, technologies: State-of-the-art

    Get PDF
    Process intensification is a chemical engineering field which has truly emerged in the past few years and is currently rapidly growing. It consists in looking for safer operating conditions, lower waste in terms of costs and energy and higher productivity; and away to reach such objectives is to develop multifunctional devices such as heat exchanger/reactors for instance. This review is focused on the latter and makes a point on heat exchanger/reactors. After a brief presentation of requirements due to transposition from batch to continuous apparatuses, heat exchangers/reactors at industrial or pilot scales and their applications are described
    corecore