8,594 research outputs found

    Accurate Inverter Error Compensation and Related Self-Commissioning Scheme in Sensorless Induction Motor Drives

    Get PDF
    This paper presents a technique for accurately identifying and compensating the inverter nonlinear voltage errors that deteriorate the performance of sensorless field-oriented controlled drives at low speed. The inverter model is more accurate than the standard signum-based models that are common in the literature, and the self-identification method is based on the feedback signal of the closed-loop flux observer in dc current steady-state conditions. The inverter model can be identified directly by the digital controller at the drive startup with no extra measures other than the motor phase currents and dc-link voltage. After the commissioning session, the compensation does not require to be tuned furthermore and is robust against temperature detuning. The experimental results, presented here for a rotor-flux-oriented SFOC IM drive for home appliances, demonstrate the feasibility of the proposed solution

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    Sliding modes in electrical drives and motion control

    Get PDF
    In this paper application of Sliding Mode Control (SMC) to electrical drives and motion control systems is discussed. It is shown that in these applications simplicity in implementation makes concepts of SMC a very attractive design alternative. Application in electrical drives control is discussed for supply via different topologies of the supply converters. Motion control is discussed for single degree of freedom motion control systems as an extension of the control of mechanical coordinates in electrical drives. Extension to multi-body systems is discussed very briefly

    Self-Commissioning Algorithm for Inverter Non-Linearity Compensation in Sensorless Induction Motor Drives

    Get PDF
    In many sensorless field-oriented control schemes for induction motor (IM) drives, flux is estimated by means of measured motor currents and control reference voltages. In most cases, flux estimation is based on the integral of back-electromotive-force (EMF) voltages. Inverter nonlinear errors (dead-time and on-state voltage drops) introduce a distortion in the estimated voltage that reduces the accuracy of the flux estimation, particularly at low speed. In the literature, most of the compensation techniques of such errors require the offline identification of the inverter model and offline postprocessing. This paper presents a simple and accurate method for the identification of inverter parameters at the drive startup. The method is integrated into the control code of the IM drive, and it is based on the information contained in the feedback signal of the flux observer. The procedure applies, more in general, to all those sensorless ac drives where the flux is estimated using the back-EMF integration, not only for IM drives but also for permanent-magnet synchronous motor drives (surface-mounted permanent magnet and interior permanent magnet). A self-commissioning algorithm is presented and tested for the sensorless control of an IM drive, implemented on a fixed-point DSP. The feasibility and effectiveness of the method are demonstrated by experimental result

    Unified Direct-Flux Vector Control for AC Motor Drives

    Get PDF
    The paper introduces a Unified Direct-Flux Vector Control scheme suitable for sinusoidal AC motor drives. The AC drives considered here are Induction Motor, Synchronous Reluctance and synchronous Permanent Magnet motor drives, including Interior and Surface-mounted Permanent Magnet types. The proposed controller operates in stator flux coordinates: the stator flux amplitude is directly controlled by the direct voltage component, while the torque is controlled by regulating the quadrature current component. The unified direct-flux control is particularly convenient when flux-weakening is required, since it easily guarantees maximum torque production under current and voltage limitations. The hardware for control is standard and the control firmware is the same for all the motors under test with the only exception of the magnetic model used for flux estimation at low speed. Experimental results on four different drives are provided, showing the validity of the proposed unified control approac

    The use of doubly fed reluctance machines for large pumps and wind turbines

    Get PDF

    Control of DFIG based wind generation systems under unbalanced network supply

    Get PDF
    This paper develops a dynamic model and control scheme for DFIG systems to improve the performance and stability under unbalanced grid conditions. A dynamic DFIG model containing the positive and negative sequence components is presented using stator voltage orientation. The proposed model accurately illustrates the active power, reactive power and torque oscillations, and provides a basis for DFIG control system design during unbalanced network supply. Various control targets such as eliminating the oscillations of the torque, active/reactive power are discussed and the required rotor negative sequence current for fulfilling different control targets are described. Performance of a DFIG-based wind turbine under unbalanced condition using the proposed control method is evaluated by simulation studies using Matlab/Simulink. The proposed control scheme significantly attenuates the DFIG torque or active power oscillations during network unbalance whereas significant torque/power oscillations exist with the conventional control schemes

    IPMSM torque control strategies based on LUTs and VCT feedback for robust control under machine parameter variations

    Get PDF
    In recent years, Interior Permanent Magnet Synchronous Machines (IPMSMs) have attracted a considerable attention in the scientific community and industry for Electric and Hybrid Electric Vehicle (HEV) propulsion systems. Lookup Table (LUT) based Field Oriented Control (FOC) strategies are widely used for IPMSM torque control. However, LUTs strongly depend on machine parameters. Deviations of these parameters due to machine ageing, temperature or manufacturing inaccuracies can lead to control instabilities in the field weakening region. In this paper, two novel hybrid IPMSM control strategies combining the usage of LUTs and Voltage Constraint Tracking (VCT) feedbacks are proposed in order to overcome the aforementioned controllability issues. Simulation results that demonstrate the validity of the proposed approaches are presented.Postprint (author's final draft
    corecore