99 research outputs found

    A 24-GHz SiGe Phased-Array Receiver—LO Phase-Shifting Approach

    Get PDF
    A local-oscillator phase-shifting approach is introduced to implement a fully integrated 24-GHz phased-array receiver using an SiGe technology. Sixteen phases of the local oscillator are generated in one oscillator core, resulting in a raw beam-forming accuracy of 4 bits. These phases are distributed to all eight receiving paths of the array by a symmetric network. The appropriate phase for each path is selected using high-frequency analog multiplexers. The raw beam-steering resolution of the array is better than 10 [degrees] for a forward-looking angle, while the array spatial selectivity, without any amplitude correction, is better than 20 dB. The overall gain of the array is 61 dB, while the array improves the input signal-to-noise ratio by 9 dB

    Survey on individual components for a 5 GHz receiver system using 130 nm CMOS technology

    Get PDF
    La intención de esta tesis es recopilar información desde un punto de vista general sobre los diferentes tipos de componentes utilizados en un receptor de señales a 5 GHz utilizando tecnología CMOS. Se ha realizado una descripción y análisis de cada uno de los componentes que forman el sistema, destacando diferentes tipos de configuraciones, figuras de mérito y otros parámetros. Se muestra una tabla resumen al final de cada sección, comparando algunos diseños que se han ido presentando a lo largo de los años en conferencias internacionales de la IEEE.The intention of this thesis is to gather information from an overview point about the different types of components used in a 5 GHz receiver using CMOS technology. A review of each of the components that form the system has been made, highlighting different types of configurations, figure of merits and parameters. A summary table is shown at the end of each section, comparing many designs that have been presented over the years at international conferences of the IEEE.Departamento de Ingeniería Energética y FluidomecánicaGrado en Ingeniería en Electrónica Industrial y Automátic

    Ultra-Wideband CMOS Transceiver Front-End for Bio-Medical Radar Sensing

    Get PDF
    Since the Federal Communication Commission released the unlicensed 3.1-10.6 GHz frequency band for commercial use in early 2002, the ultra wideband (UWB) has developed from an emerging technology into a mainstream research area. The UWB technology, which utilizes wide spectrum, opens a new era of possibility for practical applications in radar sensing, one of which is the human vital sign monitoring. The aim of this thesis is to study and research the possibility of a new generation humanrespiration monitoring sensor using UWB radar technology and to develop a new prototype of UWB radar sensor for system-on-chip solutions in CMOS technology. In this thesis, a lowpower Gaussian impulse UWB mono-static radar transceiver architecture is presented. The UWB Gaussian pulse transmitter and receiver are implemented and fabricated using 90nm CMOS technology. Since the energy of low order Gaussian pulse is mostly condensed at lower frequency, in order to transmit the pulse in a very efficient way, higher order Gaussian derivative pulses are desired as the baseband signal. This motivates the advancement of the design into UWB high-order pulse transmitter. Both the Gaussian impulse UWB transmitter and Gaussian higher-order impulse UWB transmitter take the low-power and high-speed advantage of digital circuit to generate different waveforms. The measurement results are analyzed and discussed. This thesis also presents a low-power UWB mono-static radar transceiver architecture exploiting the full benefit of UWB bandwidth in radar sensing applications. The transceiver includes a full UWB band transmitter, an UWB receiver front-end, and an on-chip diplexer. The non-coherent UWB transmitter generates pulse modulated baseband signals at different carrier frequencies within the designated 3-10 GHz band using a digitally controlled pulse generator. The test shows the proposed radar transceiver can detect the human respiration pattern within 50 cm distance. The applications of this UWB radar sensing solution in commercialized standard CMOS technology include constant breathing pattern monitoring for gated radiation therapy, realtime monitoring of patients, and any other breathing monitoring. The research paves the way to wireless technology integration with health care and bio-sensor network

    Recent Advances in Neural Recording Microsystems

    Get PDF
    The accelerating pace of research in neuroscience has created a considerable demand for neural interfacing microsystems capable of monitoring the activity of large groups of neurons. These emerging tools have revealed a tremendous potential for the advancement of knowledge in brain research and for the development of useful clinical applications. They can extract the relevant control signals directly from the brain enabling individuals with severe disabilities to communicate their intentions to other devices, like computers or various prostheses. Such microsystems are self-contained devices composed of a neural probe attached with an integrated circuit for extracting neural signals from multiple channels, and transferring the data outside the body. The greatest challenge facing development of such emerging devices into viable clinical systems involves addressing their small form factor and low-power consumption constraints, while providing superior resolution. In this paper, we survey the recent progress in the design and the implementation of multi-channel neural recording Microsystems, with particular emphasis on the design of recording and telemetry electronics. An overview of the numerous neural signal modalities is given and the existing microsystem topologies are covered. We present energy-efficient sensory circuits to retrieve weak signals from neural probes and we compare them. We cover data management and smart power scheduling approaches, and we review advances in low-power telemetry. Finally, we conclude by summarizing the remaining challenges and by highlighting the emerging trends in the field

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Development of RF CMOS receiver front-ends for ultrawideband

    Get PDF
    Ultra-Wideband (UWB) technology has become one of the hottest topics in wireless communications, for it provides cost-effective, power-efficient, high bandwidth solution for relaying data in the immediate area (up to 10 meters). This work demonstrates two different solutions for the RF front-end designs in the UWB receivers, one is distributed topology, and the other is based on traditional lumped element topology. The distributed amplifier is one of the attractive candidates for UWB Low Noise Amplifier (LNA). The design, analysis and operation of the distributed amplifiers will be presented. A distributed amplifier is designed with Coplanar Waveguide (CPW) transmission lines in 0.25-μm CMOS process for time domain UWB applications. New design techniques and new topologies are developed to enhance the power-efficiency and reduce the chip area. A compact and high performance distributed amplifier with Patterned Grounded Shield (PGS) inductors is developed in 0.25-μm CMOS process. The amplifier has a measurement result of 7.2dB gain, 4.2-6dB noise figure, and less than -10dB return loss through 0-11GHz. A new distributed amplifier implementing cascade common source gain cells is presented in 0.18-μm CMOS. The new amplifier demonstrates a high gain of 16dB at a power consumption of 100mW, and a gain of 10dB at a low power consumption of 19mW. A UWB LNA utilizing resistive shunt feedback technique is reported in 0.18-μm CMOS process. The measurement results of the UWB LNA demonstrate a maximum gain of 10.5dB and a noise figure of 3.3-4.5dB from 3-9.5GHz, while only consuming 9mW power. Based on the distributed amplifier and resistive shunt-feedback amplifier designs, two UWB RF front-ends are developed. One is a distributed LNA-Mixer. Unlike the conventional distributed mixer, which can only deliver low gain and high noise figure, the proposed distributed LNA-Mixer demonstrates 12-14dB gain ,4-5dB noise figure and higher than 10dB return loss at RF and LO ports over 2-16GHz. To overcome the power consumption and chip area problems encountered in distributed circuits, another UWB RF front-end is also designed with lumped elements. This front-end, employing resistive shunt-feedback technique into its LNA design, can achieve a gain of 12dB and noise figure of 8-10dB through 3-10GHz, the return loss of less than -10dB from 3- 10GHz at RF port, and less than -7dB at LO port, while only consuming 25mA current from 1.8V voltage supply

    Analysis and Design of Silicon based Integrated Circuits for Radio Frequency Identification and Ranging Systems at 24GHz and 60GHz Frequency Bands

    Get PDF
    This scientific research work presents the analysis and design of radio frequency (RF) integrated circuits (ICs) designed for two cooperative RF identification (RFID) proof of concept systems. The first system concept is based on localizable and sensor-enabled superregenerative transponders (SRTs) interrogated using a 24GHz linear frequency modulated continuous wave (LFMCW) secondary radar. The second system concept focuses on low power components for a 60GHz continuous wave (CW) integrated single antenna frontend for interrogating close range passive backscatter transponders (PBTs). In the 24GHz localizable SRT based system, a LFMCW interrogating radar sends a RF chirp signal to interrogate SRTs based on custom superregenerative amplifier (SRA) ICs. The SRTs receive the chirp and transmit it back with phase coherent amplification. The distance to the SRTs are then estimated using the round trip time of flight method. Joint data transfer from the SRT to the interrogator is enabled by a novel SRA quench frequency shift keying (SQ-FSK) based low data rate simplex communication. The SRTs are also designed to be roll invariant using bandwidth enhanced microstrip patch antennas. Theoretical analysis is done to derive expressions as a function of system parameters including the minimum SRA gain required for attaining a defined range and equations for the maximum number of symbols that can be transmitted in data transfer mode. Analysis of the dependency of quench pulse characteristics during data transfer shows that the duty cycle has to be varied while keeping the on-time constant to reduce ranging errors. Also the worsening of ranging precision at longer distances is predicted based on the non-idealities resulting from LFMCWchirp quantization due to SRT characteristics and is corroborated by system level measurements. In order to prove the system concept and study the semiconductor technology dependent factors, variants of 24GHz SRA ICs are designed in a 130nm silicon germanium (SiGe) bipolar complementary metal oxide technology (BiCMOS) and a partially depleted silicon on insulator (SOI) technology. Among the SRA ICs designed, the SiGe-BiCMOS ICs feature a novel quench pulse shaping concept to simultaneously improve the output power and minimum detectable input power. A direct antenna drive SRA IC based on a novel stacked transistor cross-coupled oscillator topology employing this concept exhibit one of the best reported combinations of minimum detected input power level of −100 dBm and output power level of 5.6 dBm, post wirebonding. The SiGe stacked transistor with base feedback capacitance topology employed in this design is analyzed to derive parameters including the SRA loop gain for design optimization. Other theoretical contributions include the analysis of the novel integrated quench pulse shaping circuit and formulas derived for output voltage swing taking bondwire losses into account. Another SiGe design variant is the buffered antenna drive SRA IC having a measured minimum detected input power level better than −80 dBm, and an output power level greater than 3.2 dBm after wirebonding. The two inputs and outputs of this IC also enables the design of roll invariant SRTs. Laboratory based ranging experiments done to test the concepts and theoretical considerations show a maximum measured distance of 77m while transferring data at the rate of 0.5 symbols per second using SQ-FSK. For distances less than 10m, the characterized accuracy is better than 11 cm and the precision is better than 2.4 cm. The combination of the maximum range, precision and accuracy are one of the best reported among similar works in literature to the author’s knowledge. In the 60GHz close range CW interrogator based system, the RF frontend transmits a continuous wave signal through the transmit path of a quasi circulator (QC) interfaced to an antenna to interrogate a PBT. The backscatter is received using the same antenna interfaced to the QC. The received signal is then amplified and downconverted for further processing. To prove this concept, two optimized QC ICs and a downconversion mixer IC are designed in a 22nm fully depleted SOI technology. The first QC is the transmission lines based QC which consumes a power of 5.4mW, operates at a frequency range from 56GHz to 64GHz and occupies an area of 0.49mm2. The transmit path loss is 5.7 dB, receive path gain is 2 dB and the tunable transmit path to receive path isolation is between 20 dB and 32 dB. The second QC is based on lumped elements, and operates in a relatively narrow bandwidth from 59.6GHz to 61.5GHz, has a gain of 8.5 dB and provides a tunable isolation better than 20 dB between the transmit and receive paths. This QC design also occupies a small area of 0.34mm² while consuming 13.2mW power. The downconversion is realized using a novel folded switching stage down conversion mixer (FSSDM) topology optimized to achieve one of the best reported combination of maximum voltage conversion gain of 21.5 dB, a factor of 2.5 higher than reported state-of-the-art results, and low power consumption of 5.25mW. The design also employs a unique back-gate tunable intermediate frequency output stage using which a gain tuning range of 5.5 dB is attained. Theoretical analysis of the FSSDM topology is performed and equations for the RF input stage transconductance, bandwidth, voltage conversion gain and gain tuning are derived. A feasibility study for the components of the 60GHz integrated single antenna interrogator frontend is also performed using PBTs to prove the system design concept.:1 Introduction 1 1.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . 1 1.2 Scope and Functional Specifications . . . . . . . . . . . . . . . . . 4 1.3 Objectives and Structure . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Features and Fundamentals of RFIDs and Superregenerative Amplifiers 9 2.1 RFID Transponder Technology . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Chipless RFID Transponders . . . . . . . . . . . . . . . . . 10 2.1.2 Semiconductor based RFID Transponders . . . . . . . . . . 11 2.1.2.1 Passive Transponders . . . . . . . . . . . . . . . . 11 2.1.2.2 Active Transponders . . . . . . . . . . . . . . . . . 13 2.2 RFID Interrogator Architectures . . . . . . . . . . . . . . . . . . . 18 2.2.1 Interferometer based Interrogator . . . . . . . . . . . . . . . 19 2.2.2 Ultra-wideband Interrogator . . . . . . . . . . . . . . . . . . 20 2.2.3 Continuous Wave Interrogators . . . . . . . . . . . . . . . . 21 2.3 Coupling Dependent Range and Operating Frequencies . . . . . . . 25 2.4 RFID Ranging Techniques . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.0.1 Received Signal Strength based Ranging . . . . . 28 2.4.0.2 Phase based Ranging . . . . . . . . . . . . . . . . 30 2.4.0.3 Time based Ranging . . . . . . . . . . . . . . . . . 30 2.5 Architecture Selection for Proof of Concept Systems . . . . . . . . 32 2.6 Superregenerative Amplifier (SRA) . . . . . . . . . . . . . . . . . . 35 2.6.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . 42 2.6.3 Frequency Domain Characteristics . . . . . . . . . . . . . . 45 2.7 Semiconductor Technologies for RFIC Design . . . . . . . . . . . . 48 2.7.1 Silicon Germanium BiCMOS . . . . . . . . . . . . . . . . . 48 2.7.2 Silicon-on-Insulator . . . . . . . . . . . . . . . . . . . . . . . 48 3 24GHz Superregenerative Transponder based Identification and Rang- ing System 51 3.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.1 SRT Identification and Ranging . . . . . . . . . . . . . . . . 51 3.1.2 Power Link Analysis . . . . . . . . . . . . . . . . . . . . . . 55 3.1.3 Non-idealities . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.4 SRA Quench Frequency Shift Keying for data transfer . . . 61 3.1.5 Knowledge Gained . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 RFIC Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.1 Low Power Direct Antenna Drive CMOS SRA IC . . . . . . 66 3.2.1.1 Circuit analysis and design . . . . . . . . . . . . . 66 3.2.1.2 Characterization . . . . . . . . . . . . . . . . . . . 69 3.2.2 Direct Antenna Drive SiGe SRA ICs . . . . . . . . . . . . . 71 3.2.2.1 Stacked Transistor Cross-coupled Quenchable Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.2.1.1 Resonator . . . . . . . . . . . . . . . . . . 72 3.2.2.1.2 Output Network . . . . . . . . . . . . . . 75 3.2.2.1.3 Stacked Transistor Cross-coupled Pair and Loop Gain . . . . . . . . . . . . . . . . . 77 3.2.2.2 Quench Waveform Design . . . . . . . . . . . . . . 85 3.2.2.3 Characterization . . . . . . . . . . . . . . . . . . . 89 3.2.3 Antenna Diversity SiGe SRA IC with Integrated Quench Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.2.3.1 Circuit Analysis and Design . . . . . . . . . . . . 91 3.2.3.1.1 Crosscoupled Pair and Sampling Current 94 3.2.3.1.2 Common Base Input Stage . . . . . . . . 95 3.2.3.1.3 Cascode Output Stage . . . . . . . . . . . 96 3.2.3.1.4 Quench Pulse Shaping Circuit . . . . . . 96 3.2.3.1.5 Power Gain . . . . . . . . . . . . . . . . . 99 3.2.3.2 Characterization . . . . . . . . . . . . . . . . . . . 102 3.2.4 Knowledge Gained . . . . . . . . . . . . . . . . . . . . . . . 103 3.3 Proof of Principle System Implementation . . . . . . . . . . . . . . 106 3.3.1 Superregenerative Transponders . . . . . . . . . . . . . . . 106 3.3.1.1 Bandwidth Enhanced Microstrip Patch Antennas 108 3.3.2 FMCW Radar Interrogator . . . . . . . . . . . . . . . . . . 114 3.3.3 Chirp Z-transform Based Data Analysis . . . . . . . . . . . 116 4 60GHz Single Antenna RFID Interrogator based Identification System 121 4.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.2 RFIC Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.2.1 Quasi-circulator ICs . . . . . . . . . . . . . . . . . . . . . . 125 4.2.1.1 Transmission Lines based Quasi-Circulator IC . . 126 4.2.1.2 Lumped Elements WPD based Quasi-Circulator . 130 4.2.1.3 Characterization . . . . . . . . . . . . . . . . . . . 134 4.2.1.4 Knowledge Gained . . . . . . . . . . . . . . . . . . 135 4.2.2 Folded Switching Stage Downconversion Mixer IC . . . . . 138 4.2.2.1 FSSDM Circuit Design . . . . . . . . . . . . . . . 138 4.2.2.2 Cascode Transconductance Stage . . . . . . . . . . 138 4.2.2.3 Folded Switching Stage with LC DC Feed . . . . . 142 4.2.2.4 LO Balun . . . . . . . . . . . . . . . . . . . . . . . 145 4.2.2.5 Backgate Tunable IF Stage and Offset Correction 146 4.2.2.6 Voltage Conversion Gain . . . . . . . . . . . . . . 147 4.2.2.7 Characterization . . . . . . . . . . . . . . . . . . . 150 4.2.2.8 Knowledge Gained . . . . . . . . . . . . . . . . . . 151 4.3 Proof of Principle System Implementation . . . . . . . . . . . . . . 154 5 Experimental Tests 157 5.1 24GHz System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.1.1 Ranging Experiments . . . . . . . . . . . . . . . . . . . . . 157 5.1.2 Roll Invariance Experiments . . . . . . . . . . . . . . . . . . 158 5.1.3 Joint Ranging and Data Transfer Experiments . . . . . . . 158 5.2 60GHz System Detection Experiments . . . . . . . . . . . . . . . . 165 6 Summary and Future Work 167 Appendices 171 A Derivation of Parameters for CB Amplifier with Base Feedback Capac- itance 173 B Definitions 177 C 24GHz Experiment Setups 179 D 60 GHz Experiment Setups 183 References 185 List of Original Publications 203 List of Abbreviations 207 List of Symbols 213 List of Figures 215 List of Tables 223 Curriculum Vitae 22
    corecore