135 research outputs found

    Linear Rotary Optical Delay Lines

    Full text link
    I present several classes of analytical and semi-analytical solutions for the design of high-speed rotary optical delay lines that use a combination of stationary and rotating curvilinear reflectors. Detailed analysis of four distinct classes of optical delay lines is presented. Particularly, I consider delay lines based on a single rotating reflector, a single rotating reflector and a single stationary reflector, two rotating reflectors, and two rotating reflectors and a single stationary reflector. I demonstrate that in each of these cases it is possible to design an infinite variety of the optical delay lines featuring linear dependence of the optical delay on the rotation angle. This is achieved via optimization of the shapes of rotating and stationary reflector surfaces. Moreover, in the case of two rotating reflectors a convenient spatial separation of the incoming and outgoing beams is possible. For the sake of example, all the blades presented in this paper are chosen to fit into a circle of 10cm diameter and these delay lines feature in excess of 600ps of optical delay

    Design, Development and Implementation of the Position Estimator Algorithm for Harmonic Motion on the XY Flexural Mechanism for High Precision Positioning

    Get PDF
    This article presents a novel concept of the position estimator algorithm for voice coil actuators used in precision scanning applications. Here, a voice coil motor was used as an actuator and a sensor using the position estimator algorithm, which was derived from an electro-mechanical model of a voice coil motor. According to the proposed algorithm, the position of coil relative to the fixed magnet position depends on the current drawn, voltage across coil and motor constant of the voice coil motor. This eliminates the use of a sensor that is an integral part of all feedback control systems. Proposed position estimator was experimentally validated for the voice coil actuator in integration with electro-mechanical modeling of the flexural mechanism. The experimental setup consisted of the flexural mechanism, voice coil actuator, current and voltage monitoring circuitry and its interfacing with PC via a dSPACE DS1104 R&D microcontroller board. Theoretical and experimental results revealed successful implementation of the proposed novel algorithm in the feedback control system with positioning resolution of less than ±5 microns at the scanning speed of more than 5 mm/s. Further, proportional-integral-derivative (PID) control strategy was implemented along with developed algorithm to minimize the error. The position determined by the position estimator algorithm has an accuracy of 99.4% for single direction motion with the experimentally observed position at those instantaneous states

    Education Software for the Modelling and Calibration of Kinematic Mechanisms

    Get PDF
    AbstractThis paper presents a new software for teaching the most important aspects of modelling, characterization and calibration of parallel mechanisms by means of the kinematic model, the kinematic parameter identification and the control of the system actuators and sensors. This application allows the student to develop competencies such as analysis and synthesis, to solve problems, research skills and to apply their knowledge.The developed tool presents a special interest in areas such as education, industry and research, since the application interface allows the user to carry out the different steps of the calibration procedure in an easy way. Besides, only one application is necessary to perform all the procedure for data acquisition and kinematic parameter identification.Moreover, thanks to the flexibility that the developed software offers in the programming, a senior undergraduate student can modify different algorithm variables and analyze the effects that take place with these changes. This application therefore presents an important utility as a teaching tool for the learning process and analysis of the different steps in the parallel mechanism optimization

    A multi-fingered micromechanism for coordinated micro/nano manipulation,"

    Get PDF
    ABSTRACT Micromanipulators for coordinated manipulation of microand nano-scale objects are critical for advancing several emerging applications such as microassembly and manipulation of biological cells. Most of existing designs for micromanipulators accomplish either primarily microgripping or primarily micropositioning tasks, and relatively, only a very few are capable of accomplishing both microgripping and micropositioning, however, they are generally bulky. This paper presents conceptualization, design, fabrication and experimental characterization a novel micromanipulation station for coordinated planar manipulation combining both gripping and positioning of micro-and nano-scale objects. Conceptually, the micromanipulation station is comprised of multiple, independently actuated, fingers capable of coordinating with each other to accomplish the manipulation and assembly of micron-scale objects within a small workspace. A baseline design is accomplished through a systematic design optimization of each finger maximizing the workspace area of the manipulation station using the optimization toolbox in MATLAB. The device is micromachined on a SOI (silicon-oninsulator) wafer using the DRIE (Deep Reactive Ion Etching) process. The device prototype is experimentally characterized for the output displacement characteristics of each finger for known input displacements applied through manual probing. An excellent correlation between the experimental results and the theoretical results obtained through a finite element analysis in ANSYS software, which validates both the design and the fabrication of the proof-of-the-concept, is demonstrated

    Preliminary Electrical Designs for CTEx and AFIT Satellite Ground Station

    Get PDF
    This thesis outlines the design of the electrical components for the space-based ChromoTomography Experiment (CTEx). CTEx is the next step in the development of high-speed chromotomography at the Air Force Institute of Technology. The electrical design of the system is challenging due to the large amount of data that is acquired by the imager and the limited resources that is inherent with space-based systems. Additional complication to the design is the need to know the angle of a spinning prism that is in the field of view very precisely for each image. Without this precise measurement any scene that is reconstructed from the data will be blurry and incomprehensible. This thesis also outlines how the control software for the CTEx space system should be created. The software ow is a balance of complex real time target pointing angles and simplicity to allow the system to function as quick as possible. This thesis also discusses the preliminary design for an AFIT satellite ground station based upon the design of the United States Air Force Academy\u27s ground station. The AFIT ground station will be capable of commanding and controlling satellites produced by USAFA and satellites produced by a burgeoning small satellite program at AFIT

    Redesigning a flexural joint for metal-based additive manufacturing

    Get PDF
    Traditional rigid mechanisms exhibit problems such as assembly difficulties, friction and lubrification. Flexure-based compliant mechanisms, instead, are monolithic and gain their mobility thanks to proper design and materialdeflection. Designing and producing a compliant mechanism accurately and conveniently iscrucial. Thanks to its capabilities, additive manufacturing (AM) approach can provide optimal design and production and open the way to new, unexploited performances. This study investigates the redesign of a traditional cantilevered pivot. The redesign considers the performance improvements by exploiting the advantages of the AM based on laser powder bed fusion (L-PBF). The maximum tensileand compressive loads of the redesigned joint were identified. The structure was optimised by considering the most critical geometricalparameters in terms of mechanical performance. The geometricalfactorscomply with the design rules for L-PBF process, to maximise the dimensional and surface accuracies.The new approach to the flexural joint design presented in this paper provided higher mobility if compared with the traditional approach. Therefore, this study makes a major contribution to research on the production of precision alignment mechanisms and scientific instruments

    Parasitic Motion Principle (PMP) Piezoelectric Actuators: Definition and Recent Developments

    Get PDF
    Stepping piezoelectric actuators have achieved significant improvements to satisfy the urgent demands on precision positioning with the capability of long working stroke, high accuracy and micro/nano-scale resolution, coupled with the merits of fast response and high stiffness. Among them, inchworm type, friction-inertia type, and parasitic type are three main types of stepping piezoelectric actuators. This chapter is aimed to introduce the basic definition and typical features of the parasitic motion principle (PMP), followed by summarizing the recent developments and achievements of PMP piezoelectric actuators. The emphasis of this chapter includes three key points, the structural optimization, output characteristic analysis and performance enhancement. Finally, the current existing issues and some potential research topics in the future are discussed. It is expected that this chapter can assist relevant researchers to understand the basic principle and recent development of PMP piezoelectric actuators

    Effect of fluorine on the viscosity of diopside liquid

    Get PDF

    Design and Analysis of Long-Stroke Planar Switched Reluctance Motor for Positioning Applications

    Get PDF
    This paper presents the design, control, and experimental performance evaluation of a long-stroke planar switched reluctance motor (PSRM) for positioning applications. Based on comprehensive consideration of the electromagnetic and mechanical characteristics of the PSRM, a motor design is first developed to reduce the force ripple and deformation. A control scheme with LuGre friction compensation is then proposed to improve the positioning accuracy of the PSRM. Furthermore, this control scheme is proven to ensure the stable motion of the PSRM system. Additionally, the response speed and steady-state error of the PSRM system with this control scheme are theoretically analyzed. Finally, the experimental results are presented and analyzed. The effectiveness of the precision long-stroke motion of the PSRM and its promise for use in precision positioning applications are verified experimentally
    • …
    corecore