188 research outputs found

    Elbow exoskeleton mechanism for multistage poststroke rehabilitation.

    Get PDF
    More than three million people are suffering from stroke in England. The process of post-stroke rehabilitation consists of a series of biomechanical exercises- controlled joint movement in acute phase; external assistance in the mid phase; and variable levels of resistance in the last phase. Post-stroke rehabilitation performed by physiotherapist has many limitations including cost, time, repeatability and intensity of exercises. Although a large variety of arm exoskeletons have been developed in the last two decades to substitute the conventional exercises provided by physiotherapist, most of these systems have limitations with structural configuration, sensory data acquisition and control architecture. It is still difficult to facilitate multistage post-stroke rehabilitation to patients sited around hospital bed without expert intervention. To support this, a framework for elbow exoskeleton has been developed that is portable and has the potential to offer all three types of exercises (external force, assistive and resistive) in a single structure. The design enhances torque to weight ratio compared to joint based actuation systems. The structural lengths of the exoskeleton are determined based on the mean anthropometric parameters of healthy users and the lengths of upperarm and forearm are determined to fit a wide range of users. The operation of the exoskeleton is divided into three regions where each type of exercise can be served in a specific way depending on the requirements of users. Electric motor provides power in the first region of operation whereas spring based assistive force is used in the second region and spring based resistive force is applied in the third region. This design concept provides an engineering solution of integrating three phases of post-stroke exercises in a single device. With this strategy, the energy source is only used in the first region to power the motor whereas the other two modes of exercise can work on the stored energy of springs. All these operations are controlled by a single motor and the maximum torque of the motor required is only 5 Nm. However, due to mechanical advantage, the exoskeleton can provide the joint torque up to 10 Nm. To remove the dependency on biosensor, the exoskeleton has been designed with a hardware-based mechanism that can provide assistive and resistive force. All exoskeleton components are integrated into a microcontroller-based circuit for measuring three joint parameters (angle, velocity and torque) and for controlling exercises. A user-friendly, multi-purpose graphical interface has been developed for participants to control the mode of exercise and it can be managed manually or in automatic mode. To validate the conceptual design, a prototype of the exoskeleton has been developed and it has been tested with healthy subjects. The generated assistive torque can be varied up to 0.037 Nm whereas resistive torque can be varied up to 0.057 Nm. The mass of the exoskeleton is approximately 1.8 kg. Two comparative studies have been performed to assess the measurement accuracy of the exoskeleton. In the first study, data collected from two healthy participants after using the exoskeleton and Kinect sensor by keeping Kinect sensor as reference. The mean measurement errors in joint angle are within 5.18 % for participant 1 and 1.66% for participant 2; the errors in torque measurement are within 8.48% and 7.93% respectively. In the next study, the repeatability of joint measurement by exoskeleton is analysed. The exoskeleton has been used by three healthy users in two rotation cycles. It shows a strong correction (correlation coefficient: 0.99) between two consecutive joint angle measurements and standard deviation is calculated to determine the error margin which comes under acceptable range (maximum: 8.897). The research embodied in this thesis presents a design framework of a portable exoskeleton model for providing three modes of exercises, which could provide a potential solution for all stages of post- stroke rehabilitation

    Advancements in Prosthetics and Joint Mechanisms

    Get PDF
    abstract: Robotic joints can be either powered or passive. This work will discuss the creation of a passive and a powered joint system as well as the combination system being both powered and passive along with its benefits. A novel approach of analysis and control of the combination system is presented. A passive and a powered ankle joint system is developed and fit to the field of prosthetics, specifically ankle joint replacement for able bodied gait. The general 1 DOF robotic joint designs are examined and the results from testing are discussed. Achievements in this area include the able bodied gait like behavior of passive systems for slow walking speeds. For higher walking speeds the powered ankle system is capable of adding the necessary energy to propel the user forward and remain similar to able bodied gait, effectively replacing the calf muscle. While running has not fully been achieved through past powered ankle devices the full power necessary is reached in this work for running and sprinting while achieving 4x’s power amplification through the powered ankle mechanism. A theoretical approach to robotic joints is then analyzed in order to combine the advantages of both passive and powered systems. Energy methods are shown to provide a correct behavioral analysis of any robotic joint system. Manipulation of the energy curves and mechanism coupler curves allows real time joint behavioral adjustment. Such a powered joint can be adjusted to passively achieve desired behavior for different speeds and environmental needs. The effects on joint moment and stiffness from adjusting one type of mechanism is presented.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    Design and Control of a Compliant Joint for Upper-body Exoskeletons in Physical Assistance

    Get PDF

    A review on design of upper limb exoskeletons

    Get PDF

    Advancing the Underactuated Grasping Capabilities of Single Actuator Prosthetic Hands

    Get PDF
    The last decade has seen significant advancements in upper limb prosthetics, specifically in the myoelectric control and powered prosthetic hand fields, leading to more active and social lifestyles for the upper limb amputee community. Notwithstanding the improvements in complexity and control of myoelectric prosthetic hands, grasping still remains one of the greatest challenges in robotics. Upper-limb amputees continue to prefer more antiquated body-powered or powered hook terminal devices that are favored for their control simplicity, lightweight and low cost; however, these devices are nominally unsightly and lack in grasp variety. The varying drawbacks of both complex myoelectric and simple body-powered devices have led to low adoption rates for all upper limb prostheses by amputees, which includes 35% pediatric and 23% adult rejection for complex devices and 45% pediatric and 26% adult rejection for body-powered devices [1]. My research focuses on progressing the grasping capabilities of prosthetic hands driven by simple control and a single motor, to combine the dexterous functionality of the more complex hands with the intuitive control of the more simplistic body-powered devices with the goal of helping upper limb amputees return to more active and social lifestyles. Optimization of a prosthetic hand driven by a single actuator requires the optimization of many facets of the hand. This includes optimization of the finger kinematics, underactuated mechanisms, geometry, materials and performance when completing activities of daily living. In my dissertation, I will present chapters dedicated to improving these subsystems of single actuator prosthetic hands to better replicate human hand function from simple control. First, I will present a framework created to optimize precision grasping – which is nominally unstable in underactuated configurations – from a single actuator. I will then present several novel mechanisms that allow a single actuator to map to higher degree of freedom motion and multiple commonly used grasp types. I will then discuss how fingerpad geometry and materials can better grasp acquisition and frictional properties within the hand while also providing a method of fabricating lightweight custom prostheses. Last, I will analyze the results of several human subject testing studies to evaluate the optimized hands performance on activities of daily living and compared to other commercially available prosthesis

    Nonlinear control strategy for a cost effective myoelectric prosthetic hand

    Get PDF
    The loss of a limb tremendously impacts the life of the affected individual. In the past decades, researchers have been developing artificial limbs that may return some of the missing functions and cosmetics. However, the development of dexterous mechanisms capable of mimicking the function of the human hand is a complex venture. Even though myoelectric prostheses have advanced, several issues remain to be solved before an artificial limb may be comparable to its human counterpart. Moreover, the high cost of advanced limbs prevents their widespread use among the low-income population. This dissertation presents a strategy for the low-level of control of a cost effective robotic hand for prosthetic applications. The main purpose of this work is to reduce the high cost associated with limb replacement. The presented strategy uses an electromyographic signal classifier, which detects user intent by classifying 4 different wrist movements. This information is supplied as 4 different pre-shapes of the robotic hand to the low-level of control for safely and effectively performing the grasping tasks. Two proof-of-concept prototypes were implemented, consisting on five-finger underactuated hands driven by inexpensive DC motors and equipped with low-cost sensors. To overcome the limitations and nonlinearities of inexpensive components, a multi-stage control methodology was designed for modulating the grasping force based on slippage detection and nonlinear force control. A multi-stage control methodology for modulating the grasping force based on slippage detection and nonlinear force control was designed. The two main stages of the control strategy are the force control stage and the detection stage. The control strategy uses the force control stage to maintain a constant level of force over the object. The results of the experiments performed over this stage showed a rising time of less than 1 second, force overshoot of less than 1 N and steady state error of less than 0.15 N. The detection stage is used to monitor any sliding of the object from the hand. The experiments performed over this stage demonstrated a delay in the slip detection process of less than 200 milliseconds. The initial force, and the amount of force incremented after sliding is detected, were adjusted to reduce object displacement. Experiments were then performed to test the control strategy on situations often encountered in the ADL. The results showed that the control strategy was able to detect the dynamic changes in mass of the object and to successfully adjust the grasping force to prevent the object from dropping. The evaluation of the proposed control strategy suggests that this methodology can overcome the limitation of inexpensive sensors and actuators. Therefore, this control strategy may reduce the cost of current myoelectric prosthesis. We believe that the work presented here is a major step towards the development of a cost effective myoelectric prosthetic hand

    Human-centered Electric Prosthetic (HELP) Hand

    Get PDF
    Through a partnership with Indian non-profit Bhagwan Mahaveer Viklang Sahayata Samiti, we designed a functional, robust, and and low cost electrically powered prosthetic hand that communicates with unilateral, transradial, urban Indian amputees through a biointerface. The device uses compliant tendon actuation, a small linear servo, and a wearable garment outfitted with flex sensors to produce a device that, once placed inside a prosthetic glove, is anthropomorphic in both look and feel. The prosthesis was developed such that future groups can design for manufacturing and distribution in India

    Impact of Ear Occlusion on In-Ear Sounds Generated by Intra-oral Behaviors

    Get PDF
    We conducted a case study with one volunteer and a recording setup to detect sounds induced by the actions: jaw clenching, tooth grinding, reading, eating, and drinking. The setup consisted of two in-ear microphones, where the left ear was semi-occluded with a commercially available earpiece and the right ear was occluded with a mouldable silicon ear piece. Investigations in the time and frequency domains demonstrated that for behaviors such as eating, tooth grinding, and reading, sounds could be recorded with both sensors. For jaw clenching, however, occluding the ear with a mouldable piece was necessary to enable its detection. This can be attributed to the fact that the mouldable ear piece sealed the ear canal and isolated it from the environment, resulting in a detectable change in pressure. In conclusion, our work suggests that detecting behaviors such as eating, grinding, reading with a semi-occluded ear is possible, whereas, behaviors such as clenching require the complete occlusion of the ear if the activity should be easily detectable. Nevertheless, the latter approach may limit real-world applicability because it hinders the hearing capabilities.</p

    Design, Modelling, and Control of a Reconfigurable Rotary Series Elastic Actuator with Nonlinear Stiffness for Assistive Robots

    Full text link
    In assistive robots, compliant actuator is a key component in establishing safe and satisfactory physical human-robot interaction (pHRI). The performance of compliant actuators largely depends on the stiffness of the elastic element. Generally, low stiffness is desirable to achieve low impedance, high fidelity of force control and safe pHRI, while high stiffness is required to ensure sufficient force bandwidth and output force. These requirements, however, are contradictory and often vary according to different tasks and conditions. In order to address the contradiction of stiffness selection and improve adaptability to different applications, we develop a reconfigurable rotary series elastic actuator with nonlinear stiffness (RRSEAns) for assistive robots. In this paper, an accurate model of the reconfigurable rotary series elastic element (RSEE) is presented and the adjusting principles are investigated, followed by detailed analysis and experimental validation. The RRSEAns can provide a wide range of stiffness from 0.095 Nm/deg to 2.33 Nm/deg, and different stiffness profiles can be yielded with respect to different configuration of the reconfigurable RSEE. The overall performance of the RRSEAns is verified by experiments on frequency response, torque control and pHRI, which is adequate for most applications in assistive robots. Specifically, the root-mean-square (RMS) error of the interaction torque results as low as 0.07 Nm in transparent/human-in-charge mode, demonstrating the advantages of the RRSEAns in pHRI

    The SmartHand transradial prosthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prosthetic components and control interfaces for upper limb amputees have barely changed in the past 40 years. Many transradial prostheses have been developed in the past, nonetheless most of them would be inappropriate if/when a large bandwidth human-machine interface for control and perception would be available, due to either their limited (or inexistent) sensorization or limited dexterity. <it>SmartHand </it>tackles this issue as is meant to be clinically experimented in amputees employing different neuro-interfaces, in order to investigate their effectiveness. This paper presents the design and on bench evaluation of the SmartHand.</p> <p>Methods</p> <p>SmartHand design was bio-inspired in terms of its physical appearance, kinematics, sensorization, and its multilevel control system. Underactuated fingers and differential mechanisms were designed and exploited in order to fit all mechatronic components in the size and weight of a natural human hand. Its sensory system was designed with the aim of delivering significant afferent information to the user through adequate interfaces.</p> <p>Results</p> <p>SmartHand is a five fingered self-contained robotic hand, with 16 degrees of freedom, actuated by 4 motors. It integrates a bio-inspired sensory system composed of 40 proprioceptive and exteroceptive sensors and a customized embedded controller both employed for implementing automatic grasp control and for potentially delivering sensory feedback to the amputee. It is able to perform everyday grasps, count and independently point the index. The weight (530 g) and speed (closing time: 1.5 seconds) are comparable to actual commercial prostheses. It is able to lift a 10 kg suitcase; slippage tests showed that within particular friction and geometric conditions the hand is able to stably grasp up to 3.6 kg cylindrical objects.</p> <p>Conclusions</p> <p>Due to its unique embedded features and human-size, the SmartHand holds the promise to be experimentally fitted on transradial amputees and employed as a bi-directional instrument for investigating -during realistic experiments- different interfaces, control and feedback strategies in neuro-engineering studies.</p
    • …
    corecore