2,483 research outputs found

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl

    ENERGY-EFFICIENT AND SECURE HARDWARE FOR INTERNET OF THINGS (IoT) DEVICES

    Get PDF
    Internet of Things (IoT) is a network of devices that are connected through the Internet to exchange the data for intelligent applications. Though IoT devices provide several advantages to improve the quality of life, they also present challenges related to security. The security issues related to IoT devices include leakage of information through Differential Power Analysis (DPA) based side channel attacks, authentication, piracy, etc. DPA is a type of side-channel attack where the attacker monitors the power consumption of the device to guess the secret key stored in it. There are several countermeasures to overcome DPA attacks. However, most of the existing countermeasures consume high power which makes them not suitable to implement in power constraint devices. IoT devices are battery operated, hence it is important to investigate the methods to design energy-efficient and secure IoT devices not susceptible to DPA attacks. In this research, we have explored the usefulness of a novel computing platform called adiabatic logic, low-leakage FinFET devices and Magnetic Tunnel Junction (MTJ) Logic-in-Memory (LiM) architecture to design energy-efficient and DPA secure hardware. Further, we have also explored the usefulness of adiabatic logic in the design of energy-efficient and reliable Physically Unclonable Function (PUF) circuits to overcome the authentication and piracy issues in IoT devices. Adiabatic logic is a low-power circuit design technique to design energy-efficient hardware. Adiabatic logic has reduced dynamic switching energy loss due to the recycling of charge to the power clock. As the first contribution of this dissertation, we have proposed a novel DPA-resistant adiabatic logic family called Energy-Efficient Secure Positive Feedback Adiabatic Logic (EE-SPFAL). EE-SPFAL based circuits are energy-efficient compared to the conventional CMOS based design because of recycling the charge after every clock cycle. Further, EE-SPFAL based circuits consume uniform power irrespective of input data transition which makes them resilience against DPA attacks. Scaling of CMOS transistors have served the industry for more than 50 years in providing integrated circuits that are denser, and cheaper along with its high performance, and low power. However, scaling of the transistors leads to increase in leakage current. Increase in leakage current reduces the energy-efficiency of the computing circuits,and increases their vulnerability to DPA attack. Hence, it is important to investigate the crypto circuits in low leakage devices such as FinFET to make them energy-efficient and DPA resistant. In this dissertation, we have proposed a novel FinFET based Secure Adiabatic Logic (FinSAL) family. FinSAL based designs utilize the low-leakage FinFET device along with adiabatic logic principles to improve energy-efficiency along with its resistance against DPA attack. Recently, Magnetic Tunnel Junction (MTJ)/CMOS based Logic-in-Memory (LiM) circuits have been explored to design low-power non-volatile hardware. Some of the advantages of MTJ device include non-volatility, near-zero leakage power, high integration density and easy compatibility with CMOS devices. However, the differences in power consumption between the switching of MTJ devices increase the vulnerability of Differential Power Analysis (DPA) based side-channel attack. Further, the MTJ/CMOS hybrid logic circuits which require frequent switching of MTJs are not very energy-efficient due to the significant energy required to switch the MTJ devices. In the third contribution of this dissertation, we have investigated a novel approach of building cryptographic hardware in MTJ/CMOS circuits using Look-Up Table (LUT) based method where the data stored in MTJs are constant during the entire encryption/decryption operation. Currently, high supply voltage is required in both writing and sensing operations of hybrid MTJ/CMOS based LiM circuits which consumes a considerable amount of energy. In order to meet the power budget in low-power devices, it is important to investigate the novel design techniques to design ultra-low-power MTJ/CMOS circuits. In the fourth contribution of this dissertation, we have proposed a novel energy-efficient Secure MTJ/CMOS Logic (SMCL) family. The proposed SMCL logic family consumes uniform power irrespective of data transition in MTJ and more energy-efficient compared to the state-of-art MTJ/ CMOS designs by using charge sharing technique. The other important contribution of this dissertation is the design of reliable Physical Unclonable Function (PUF). Physically Unclonable Function (PUF) are circuits which are used to generate secret keys to avoid the piracy and device authentication problems. However, existing PUFs consume high power and they suffer from the problem of generating unreliable bits. This dissertation have addressed this issue in PUFs by designing a novel adiabatic logic based PUF. The time ramp voltages in adiabatic PUF is utilized to improve the reliability of the PUF along with its energy-efficiency. Reliability of the adiabatic logic based PUF proposed in this dissertation is tested through simulation based temperature variations and supply voltage variations

    EMERGING COMPUTING BASED NOVEL SOLUTIONS FOR DESIGN OF LOW POWER CIRCUITS

    Get PDF
    The growing applications for IoT devices have caused an increase in the study of low power consuming circuit design to meet the requirement of devices to operate for various months without external power supply. Scaling down the conventional CMOS causes various complications to design due to CMOS properties, therefore various non-conventional CMOS design techniques are being proposed that overcome the limitations. This thesis focuses on some of those emerging and novel low power design technique namely Adiabatic logic and low power devices like Magnetic Tunnel Junction (MTJ) and Carbon Nanotube Field Effect transistor (CNFET). Circuits that are used for large computations (multipliers, encryption engines) that amount to maximum part of power consumption in a whole chip are designed using these novel low power techniques

    Adiabatic Approach for Low-Power Passive Near Field Communication Systems

    Get PDF
    This thesis tackles the need of ultra-low power electronics in the power limited passive Near Field Communication (NFC) systems. One of the techniques that has proven the potential of delivering low power operation is the Adiabatic Logic Technique. However, the low power benefits of the adiabatic circuits come with the challenges due to the absence of single opinion on the most energy efficient adiabatic logic family which constitute appropriate trade-offs between computation time, area and complexity based on the circuit and the power-clocking schemes. Therefore, five energy efficient adiabatic logic families working in single-phase, 2-phase and 4-phase power-clocking schemes were chosen. Since flip-flops are the basic building blocks of any sequential circuit and the existing flip-flops are MUX-based (having more transistors) design, therefore a novel single-phase, 2-phase and 4-phase reset based flip-flops were proposed. The performance of the multi-phase adiabatic families was evaluated and compared based on the design examples such as 2-bit ring counter, 3-bit Up-Down counter and 16-bit Cyclic Redundancy Check (CRC) circuit (benchmark circuit) based on ISO 14443-3A standard. Several trade-offs, design rules, and an appropriate range for the supply voltage scaling for multi-phase adiabatic logic are proposed. Furthermore, based on the NFC standard (ISO 14443-3A), data is frequently encoded using Manchester coding technique before transmitting it to the reader. Therefore, if Manchester encoding can be implemented using adiabatic logic technique, energy benefits are expected. However, adiabatic implementation of Manchester encoding presents a challenge. Therefore, a novel method for implementing Manchester encoding using adiabatic logic is proposed overcoming the challenges arising due to the AC power-clock. Other challenges that come with the dynamic nature of the adiabatic gates and the complexity of the 4-phase power-clocking scheme is in synchronizing the power-clock v phases and the time spent in designing, validation and debugging of errors. This requires a specific modelling approach to describe the adiabatic logic behaviour at the higher level of abstraction. However, describing adiabatic logic behaviour using Hardware Description Languages (HDLs) is a challenging problem due to the requirement of modelling the AC power-clock and the dual-rail inputs and outputs. Therefore, a VHDL-based modelling approach for the 4-phase adiabatic logic technique is developed for functional simulation, precise timing analysis and as an improvement over the previously described approaches

    Skyrmion Gas Manipulation for Probabilistic Computing

    Full text link
    The topologically protected magnetic spin configurations known as skyrmions offer promising applications due to their stability, mobility and localization. In this work, we emphasize how to leverage the thermally driven dynamics of an ensemble of such particles to perform computing tasks. We propose a device employing a skyrmion gas to reshuffle a random signal into an uncorrelated copy of itself. This is demonstrated by modelling the ensemble dynamics in a collective coordinate approach where skyrmion-skyrmion and skyrmion-boundary interactions are accounted for phenomenologically. Our numerical results are used to develop a proof-of-concept for an energy efficient (μW\sim\mu\mathrm{W}) device with a low area imprint (μm2\sim\mu\mathrm{m}^2). Whereas its immediate application to stochastic computing circuit designs will be made apparent, we argue that its basic functionality, reminiscent of an integrate-and-fire neuron, qualifies it as a novel bio-inspired building block.Comment: 41 pages, 20 figure
    corecore