451 research outputs found

    Supernumerary Robotic Fingers as a Therapeutic Device for Hemiparetic Patients

    Get PDF
    Patients with hemiparesis often have limited functionality in the left or right hand. The standard therapeutic approach requires the patient to attempt to make use of the weak hand even though it is not functionally capable, which can result in feelings of frustration. Furthermore, hemiparetic patients also face challenges in completing many bimanual tasks, for example walker manipulation, that are critical to patients’ independence and quality of life. A prototype therapeutic device with two supernumerary robotic fingers was used to determine if robotic fingers could functionally assist a human in the performance of bimanual tasks by observing the pose of the healthy hand. Specific focus was placed on the identification of a straightforward control routine which would allow a patient to carry out simple manipulation tasks with some intermittent input from a therapist. Part of this routine involved allowing a patient to switch between active and inactive monitoring of hand position, resulting in additional manipulation capabilities. The prototype successfully enabled a test subject to complete various bimanual tasks using the robotic fingers in place of normal hand motions. From these results, it is clear that the device could allow a hemiparetic patient to complete tasks which would previously have been impossible to perform

    How virtual and mechanical coupling impact bimanual tracking.

    Get PDF
    Bilateral training systems look to promote the paretic hand's use in individuals with hemiplegia. Although this is normally achieved using mechanical coupling (i.e., a physical connection between the hands), a virtual reality system relying on virtual coupling (i.e., through a shared virtual object) would be simpler to use and prevent slacking. However, it is not clear whether different coupling modes differently impact task performance and effort distribution between the hands. We explored how 18 healthy right-handed participants changed their motor behaviors in response to the uninstructed addition of mechanical coupling, and virtual coupling using a shared cursor mapped to the average hands' position. In a second experiment, we then studied the impact of connection stiffness on performance, perception, and effort imbalance. The results indicated that both coupling types can induce the hands to actively contribute to the task. However, the task asymmetry introduced by using a cursor mapped to either the left or right hand only modulated the hands' contribution when not mechanically coupled. The tracking performance was similar for all coupling types, independent of the connection stiffness, although the mechanical coupling was preferred and induced the hands to move with greater correlation. These findings suggest that virtual coupling can induce the hands to actively contribute to a task in healthy participants without hindering their performance. Further investigation on the coupling types' impact on the performance and hands' effort distribution in patients with hemiplegia could allow for the design of simpler training systems that promote the affected hand's use.NEW & NOTEWORTHY We showed that the uninstructed addition of a virtual and/or a mechanical coupling can induce both hands to actively contribute in a continuous redundant bimanual tracking task without impacting performance. In addition, we showed that the task asymmetry can only alter the effort distribution when the hands are not connected, independent of the connection stiffness. Our findings suggest that virtual coupling could be used in the development of simpler VR-based training devices

    Design and Testing of an Agonist-Antagonist Position-Impedance Controlled Myoelectric Prosthesis

    Get PDF
    Intuitive prosthetic control is limited by the inability to easily convey intention and perceive physical requirements of the task. Rather than providing haptic feedback and allowing users to consciously control every component of manipulation, relegating some aspects of control to the device may simplify operation. This study focuses on the development and testing of a control scheme able to identify object stiffness and regulate impedance. The system includes an algorithm to detect the apparent stiffness of an object, a proportional nonlinear EMG control algorithm for interpreting a user’s desired grasp aperture, and an antagonistically acting impedance controller. Performance of a testbed prosthetic simulation used to controllably extrude pastes of different properties from a compliant tube was compared to that of the non-dominant human hand. The paste volume extrusion error and response time to perform the task were recorded for comparison. Statistical analysis using (GEE) and (TOST) suggests the prosthetic controller and human hand performed similarly along these metrics. Performance differences in the trials were more strongly correlated to tube type and repetition block. The results suggest that the developed controller allows users to perform a controlled squeezing task at a level comparable to the human hand with minimal training. It also suggests that a priori stiffness estimation acquired through quick palpations may be sufficient for effective control during simple manipulation. The lack of a learning curve suggests that the development of systems that automatically control aspects of mechanical interaction may offer users more advanced control capabilities with low cognitive load

    Self-Powered Robots to Reduce Motor Slacking During Upper-Extremity Rehabilitation: A Proof of Concept Study

    Get PDF
    Background: Robotic rehabilitation is a highly promising approach to recover lost functions after stroke or other neurological disorders. Unfortunately, robotic rehabilitation currently suffers from motor slacking , a phenomenon in which the human motor system reduces muscle activation levels and movement excursions, ostensibly to minimize metabolic- and movement-related costs. Consequently, the patient remains passive and is not fully engaged during therapy. To overcome this limitation, we envision a new class of body-powered robots and hypothesize that motor slacking could be reduced if individuals must provide the power to move their impaired limbs via their own body (i.e., through the motion of a healthy limb). Objective: To test whether a body-powered exoskeleton (i.e. robot) could reduce motor slacking during robotic training. Methods: We developed a body-powered robot that mechanically coupled the motions of the user\u27s elbow joints. We tested this passive robot in two groups of subjects (stroke and able-bodied) during four exercise conditions in which we controlled whether the robotic device was powered by the subject or by the experimenter, and whether the subject\u27s driven arm was engaged or at rest. Motor slacking was quantified by computing the muscle activation changes of the elbow flexor and extensor muscles using surface electromyography. Results: Subjects had higher levels of muscle activation in their driven arm during self-powered conditions compared to externally-powered conditions. Most notably, subjects unintentionally activated their driven arm even when explicitly told to relax when the device was self-powered. This behavior was persistent throughout the trial and did not wane after the initiation of the trial. Conclusions: Our findings provide novel evidence indicating that motor slacking can be reduced by self-powered robots; thus demonstrating promise for rehabilitation of impaired subjects using this new class of wearable system. The results also serve as a foundation to develop more sophisticated body-powered robots (e.g., with controllable transmissions) for rehabilitation purposes

    Design and Development of an Open-Source ADL-Compliant Prosthetic Arm for Transradial Amputees

    Get PDF
    Transradial amputation is traumatic – leading to the amputee having a limited ability to perform activities of daily living (ADLs). Below-elbow prostheses are prescribed. The high cost associated with prostheses results in many amputees in low-to-middleincome countries relying on government subsidised devices, which are cosmetic rather than functional, or none at all. Open-source prostheses have the potential to increase the accessibility of functional prosthetic arms, but at present are not optimised to assist the dominant hand in performing bimanual ADLs. The aim of this study is thus to design and experimentally validate an open-source prosthetic arm that is functionally optimised for the performance of ADLs in the unilateral transradial amputee population. The ADL arm is functional open-source below-elbow prosthesis. This device is bodypowered; featuring a hand terminal device with thumb abduction and adduction, and wrist pronation and supination functionality. Elbow flexion of the residual limb is used to actuate the terminal device. The prosthesis requires no existing prosthetic hardware; and the majority of parts can be 3D printed. The ADL arm is designed to reliably perform the grasps required by the non-dominant hand in two-handed ADL activities. Device validation includes functional and simulated-use components. The functional assessment uses the Anthropomorphic Hand Assessment Protocol (AHAP); while the simulated-use assessment involves a practical ADL verification, and a usability assessment using healthy volunteer participants. The AHAP gives as result a grasping ability score (GAS) and partial GAS for ten grasp types associated with ADLs. The GAS represents the percentage of healthy limb function achievable by the prosthesis. The overall GAS of the ADL arm is found to be 68 %. The ADL arm achieved a partial GAS of greater than 75 % for four of five bimanual ADL grasps. A major design flaw resulted in a partial GAS of 33.3 % for the lateral pinch grasp type. The performance in this grasp, as well as others, would be greatly improved by the inclusion of a mechanism to lock the distal joint of the digits in extension during grasp. In this way, the hand would be better able to apply force to an object with the pads of the digits. Simulated-use validation of the ADL arm is performed on healthy participants using the designed bypass socket. The ADL assessment involves the completion of 86 ADL and instrumental ADL tasks; scored using the designed self-report questionnaire. The participant could perform all but seven tasks independently, and the perceived difficulty for tasks requiring the prosthesis was low overall. Seven healthy volunteers are used to assess the system usability. Participants performed a number of tasks and then completed the system usability scale (SUS). The perceived usability of the device is found to increase with increased device familiarity, yielding an overall score of 84.29. This result indicates that participants found the experience with the device to be ‘good' overall. In conclusion, the ADL arm is functionally competent and has proven its ability to assist in the performance of ADLs in a simulated-use environment; using healthy participants. A number of design modifications are recommended to overcome the limitations of the current design, which should be tested in the transradial amputee population to corroborate the results obtained in this study

    Review of control strategies for robotic movement training after neurologic injury

    Get PDF
    There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies

    Robot-aided neurorehabilitation of the upper extremities

    Get PDF
    Task-oriented repetitive movements can improve muscle strength and movement co-ordination in patients with impairments due to neurological lesions. The application of robotics and automation technology can serve to assist, enhance, evaluate and document the rehabilitation of movements. The paper provides an overview of existing devices that can support movement therapy of the upper extremities in subjects with neurological pathologies. The devices are critically compared with respect to technical function, clinical applicability, and, if they exist, clinical outcome

    Upper limb soft robotic wearable devices: a systematic review

    Get PDF
    Introduction: Soft robotic wearable devices, referred to as exosuits, can be a valid alternative to rigid exoskeletons when it comes to daily upper limb support. Indeed, their inherent flexibility improves comfort, usability, and portability while not constraining the user’s natural degrees of freedom. This review is meant to guide the reader in understanding the current approaches across all design and production steps that might be exploited when developing an upper limb robotic exosuit. Methods: The literature research regarding such devices was conducted in PubMed, Scopus, and Web of Science. The investigated features are the intended scenario, type of actuation, supported degrees of freedom, low-level control, high-level control with a focus on intention detection, technology readiness level, and type of experiments conducted to evaluate the device. Results: A total of 105 articles were collected, describing 69 different devices. Devices were grouped according to their actuation type. More than 80% of devices are meant either for rehabilitation, assistance, or both. The most exploited actuation types are pneumatic (52%) and DC motors with cable transmission (29%). Most devices actuate 1 (56%) or 2 (28%) degrees of freedom, and the most targeted joints are the elbow and the shoulder. Intention detection strategies are implemented in 33% of the suits and include the use of switches and buttons, IMUs, stretch and bending sensors, EMG and EEG measurements. Most devices (75%) score a technology readiness level of 4 or 5. Conclusion: Although few devices can be considered ready to reach the market, exosuits show very high potential for the assistance of daily activities. Clinical trials exploiting shared evaluation metrics are needed to assess the effectiveness of upper limb exosuits on target users

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces

    Motor Learning and Motor Control Mechanisms in an Haptic Dyad

    Get PDF
    The word \u201cdyad\u201d defines the interaction between two human or cybernetic organisms. During such interaction, there is an organized flow of information between the two elements of the dyad, in a fully bidirectional manner. With this mutual knowledge they are able to understand the actual state of the dyad as well as the previous states and, in some cases, to predict a response for possible scenarios. In the studies presented in this thesis we aim to understand the kind of information exchanged during dyadic interaction and the way this information is communicated from one individual to another not only in a purely dyadic context but also in a more general social sense, namely dissemination of knowledge via physical and non-physical interpersonal interactions. More specifically, the focus of the experimental activities will be on motor learning and motor control mechanisms, in the general context of embodied motor cognition. Solving a task promotes the creation of an internal representation of the dynamical characteristics of the working environment. An understanding of the environmental characteristics allows the subjects to become proficient in such task. We also intended to evaluate the application of such a model when it is created and applied under different conditions and using different body parts. For example, we investigated how human subjects can generalize the acquired model of a certain task, carried out by means of the wrist, in the sense of mapping the skill from the distal degrees of freedom of the wrist to the proximal degrees of freedom of the arm (elbow & shoulder), under the same dynamical conditions. In the same line of reasoning, namely that individuals solving a certain task need to develop an internal model of the environment, we investigated in which manner different skill levels of the two partners of a dyad interfere with the overall learning/training process. It is known indeed that internal models are essential for allowing dyadic member to apply different motor control strategies for completing the task. Previous studies have shown that the internal model created in a solo performance can be shared and exploited in a dyadic collaboration to solve the same task. In our study we went a step forward by demonstrating that learning an unstable task in a dyad propitiates the creation of a shared internal model of the task, which includes the representation of the mutual forces applied by the partners. Thus when the partners in the dyad have different knowledge levels of the task, the representation created by the less proficient partner can be mistaken since it may include the proficient partner as part of the dynamical conditions of the task instead of as the assistance helping him to complete the experiments. For this reason we implemented a dyadic learning protocol that allows the na\uefve subject to explore and create an accurate internal model, while exploiting, at the same time, the advantage of working with an skilled partner
    • …
    corecore