732 research outputs found

    A completely kinematostatically decoupled XY compliant parallel manipulator through new topology structure

    Get PDF
    This paper deals with a completely kinematostaticaly decoupled XY compliant parallel manipulator (CPM) composed of exactly-constrained compliant modules. A new 4-PP XY translational parallel mechanism (TPM) with a new topology structure is firstly proposed where each two P (P: prismatic) joints on the base in two non-adjacent legs are rigidly connected. A novel 4-PP XY CPM is then obtained by replacing each traditional P join on the base in the 4-PP XY TPM with a compound basic parallelogram module (CBPM) and replacing each traditional P joint on the motion stage with a basic parallelogram module (BPM). Approximate analytical model is derived with comparison to the FEA (finite element analysis) model and experiment for a case study. The proposed novel XY CPM has a compact configuration with good dynamics, and is able to well constrain the parasitic rotation and the cross-axis coupling of the motion stage. The cross-axis motion of the input stage can be completely eliminated, and the lost motion between the input stage and the motion stage is significantly reduced

    Design of 3-legged XYZ compliant parallel manipulators with minimised parasitic rotations

    Get PDF
    This paper deals with the design of 3-legged distributed-compliance XYZ compliant parallel manipulators (CPMs) with minimised parasitic rotations, based on the kinematically decoupled 3-PPPRR (P: prismatic joint, and R: revolute joint) and 3-PPPR translational parallel mechanisms (TPMs). The designs are firstly proposed using the kinematic substitution approach, with the help of the stiffness center (SC) overlapping based approach. This is done by an appropriate embedded arrangement so that all of the SCs associated with the passive compliant modules overlap at the point where all of the input forces applied at the input stages intersect. Kinematostatic modelling and characteristic analysis are then carried out for the proposed large-range 3-PPPRR XYZ CPM with overlapping SCs. The results from finite element analysis (FEA) are compared to the characteristics found for the developed analytical models, as are experimental testing results (primary motion) from the prototyped 3-PPPRR XYZ CPM with overlapping SCs. Finally, issues on large-range motion and dynamics of such designs are discussed, as are possible improvements of the actuated compliant P joint. It is shown that the potential merits of the designs presented here include a) minimised parasitic rotations by only using three identical compliant legs; b) compact configurations and small size due to the use of embedded designs; c) approximately kinematostatically decoupled designs capable of easy controls; and d) monolithic fabrication for each leg using existing planar manufacturing technologies such as electric discharge machining (EDM)

    Creative design and modelling of large-range translation compliant parallel manipulators

    Get PDF
    Compliant parallel mechanisms/manipulators (CPMs) are parallel manipulators that transmit motion/load by deformation of their compliant members. Due to their merits such as the eliminated backlash and friction, no need for lubrication, reduced wear and noise, and monolithic configuration, they have been used in many emerging applications as scanning tables, bio-cell injectors, nano-positioners, and etc. How to design large-range CPMs is still a challenging issue. To meet the needs for large-range translational CPMs for high-precision motion stages, this thesis focuses on the systematic conceptual design and modelling of large-range translational CPMs with distributed-compliance. Firstly, several compliant parallel modules with distributed-compliance, such as spatial multi-beam modules, are identified as building blocks of translational CPMs. A normalized, nonlinear and analytical model is then derived for the spatial multi-beam modules to address the non-linearity of load-equilibrium equations. Secondly, a new design methodology for translational CPMs is presented. The main characteristic of the proposed design approach is not only to replace kinematic joints as in the literature, but also to replace kinematic chains with appropriate multiple degrees-of-freedom (DOF) compliant parallel modules. Thirdly, novel large-range translational CPMs are constructed using the proposed design methodology and identified compliant parallel modules. The proposed novel CPMs include, for example, a 1-DOF compliant parallel gripper with auto-adaptive grasping function, a stiffness-enhanced XY CPM with a spatial compliant leg, and an improved modular XYZ CPM using identical spatial double four-beam modules. Especially, the proposed XY CPM and XYZ CPM can achieve a 10mm’s motion range along each axis in the case studies. Finally, kinematostatic modelling of the proposed translational CPMs is presented to enable rapid performance characteristic analysis. The proposed analytical models are also compared with finite element analysis

    A constraint and position identification (CPI) approach for the synthesis of decoupled spatial translational compliant parallel manipulators

    Get PDF
    This paper introduces a screw theory based method termed constraint and position identification (CPI) approach to synthesize decoupled spatial translational compliant parallel manipulators (XYZ CPMs) with consideration of actuation isolation. The proposed approach is based on a systematic arrangement of rigid stages and compliant modules in a three-legged XYZ CPM system using the constraint spaces and the position spaces of the compliant modules. The constraint spaces and the position spaces are firstly derived based on the screw theory instead of using the rigid-body mechanism design experience. Additionally, the constraint spaces are classified into different constraint combinations, with typical position spaces depicted via geometric entities. Furthermore, the systematic synthesis process based on the constraint combinations and the geometric entities is demonstrated via several examples. Finally, several novel decoupled XYZ CPMs with monolithic configurations are created and verified by finite elements analysis. The present CPI approach enables experts and beginners to synthesize a variety of decoupled XYZ CPMs with consideration of actuation isolation by selecting an appropriate constraint and an optimal position for each of the compliant modules according to a specific application

    PKM mechatronic clamping adaptive device

    Get PDF
    This study proposes a novel adaptive fixturing device based on active clamping systems for smart micropositioning of thin-walled precision parts. The modular architecture and the structure flexibility make the system suitable for various industrial applications. The proposed device is realized as a Parallel Kinematic Machine (PKM), opportunely sensorized and controlled, able to perform automatic error-free workpiece clamping procedures, drastically reducing the overall fixturing set-up time. The paper describes the kinematics and dynamics of this mechatronic system. A first campaign of experimental trails has been carried out on the prototype, obtaining promising results

    Development of a passive compliant mechanism for measurement of micro/nano-scale planar three DOF motions

    Get PDF
    This paper presents the design, optimization, and computational and experimental performance evaluations of a passively actuated, monolithic, compliant mechanism. The mechanism is designed to be mounted on or built into any precision positioning stage which produces three degree of freedom (DOF) planar motions. It transforms such movements into linear motions which can then be measured using laser interferometry based sensing and measurement techniques commonly used for translational axes. This methodology reduces the introduction of geometric errors into sensor measurements, and bypasses the need for increased complexity sensing systems. A computational technique is employed to optimize the mechanism’s performance, in particular to ensure the kinematic relationships match a set of desired relationships. Computational analysis is then employed to predict the performance of the mechanism throughout the workspace of a coupled positioning stage, and the errors are shown to vary linearly with the input position. This allows the errors to be corrected through calibration. A prototype is manufactured and experimentally tested, confirming the ability of the proposed mechanism to permit measurements of three DOF motions

    Design and control methodology of a 3-DOF flexure-based mechanism for micro/nano-positioning

    Get PDF
    A 3-DOF (X–Y–θZ) planar flexure-based mechanism is designed and monolithically manufactured using Wire Electro-Discharge Machining (WEDM) technology. The compact flexure-based mechanism is directly driven by three piezoelectric actuators (PZTs) through decoupling mechanisms. The orthogonal configuration in the x and y directions can guarantee the decoupling translational motion in these axes. The rotational motion and translational displacement in the x direction can be decoupled by controlling the piezoelectric actuators in the x axis with the same displacement values in same and opposite motion directions, respectively. The static and dynamic models of the developed flexure-based mechanism have been developed based on the pseudo-rigid-body model methodology. The mechanical design optimization is conducted to improve the static and dynamic characteristics of the flexure-based mechanism. Finite Element Analyses (FEA) are also carried out to verify the established models and optimization results. A novel hybrid feedforward/feedback controller has been provided to eliminate/reduce the nonlinear hysteresis and external disturbance of the flexure-based mechanism. Experimental testing has been performed to examine the dynamic performance of the developed flexure-based mechanism

    Affordable flexible hybrid manipulator for miniaturised product assembly

    Get PDF
    Miniaturised assembly systems are capable of assembling parts of a few millimetres in size with an accuracy of a few micrometres. Reducing the size and the cost of such a system while increasing its flexibility and accuracy is a challenging issue. The introduction of hybrid manipulation, also called coarse/fine manipulation, within an assembly system is the solution investigated in this thesis. A micro-motion stage (MMS) is designed to be used as the fine positioning mechanism of the hybrid assembly system. MMSs often integrate compliant micro-motion stages (CMMSs) to achieve higher performances than the conventional MMSs. CMMSs are mechanisms that transmit an output force and displacement through the deformation of their structure. Although widely studied, the design and modelling techniques of these mechanisms still need to be improved and simplified. Firstly, the linear modelling of CMMSs is evaluated and two polymer prototypes are fabricated and characterised. It is found that polymer based designs have a low fabrication cost but not suitable for construction of a micro-assembly system. A simplified nonlinear model is then derived and integrated within an analytical model, allowing for the full characterisation of the CMMS in terms of stiffness and range of motion. An aluminium CMMS is fabricated based on the optimisation results from the analytical model and is integrated within an MMS. The MMS is controlled using dual-range positioning to achieve a low-cost positioning accuracy better than 2µm within a workspace of 4.4×4.4mm2. Finally, a hybrid manipulator is designed to assemble mobile-phone cameras and sensors automatically. A conventional robot manipulator is used to pick and place the parts in coarse mode while the aluminium CMMS based MMS is used for fine alignment of the parts. A high-resolution vision system is used to locate the parts on the substrate and to measure the relative position of the manipulator above MMS using a calibration grid with square patterns. The overall placement accuracy of the assembly system is ±24µm at 3σ and can reach 2µm, for a total cost of less than £50k, thus demonstrating the suitability of hybrid manipulation for desktop-size miniaturised assembly systems. The precision of the existing system could be significantly improved by making the manipulator stiffer (i.e. preloaded bearings…) and adjustable to compensate for misalignment. Further improvement could also be made on the calibration of the vision system. The system could be either scaled up or down using the same architecture while adapting the controllers to the scale.Engineering and Physical Sciences Research Council (EPSRC
    • …
    corecore