175 research outputs found

    Soft Robots for Ocean Exploration and Offshore Operations: A Perspective

    Get PDF
    The ocean and human activities related to the sea are under increasing pressure due to climate change, widespread pollution, and growth of the offshore energy sector. Data, in under-sampled regions of the ocean and in the offshore patches where the industrial expansion is taking place, are fundamental to manage successfully a sustainable development and to mitigate climate change. Existing technology cannot cope with the vast and harsh environments that need monitoring and sampling the most. The limiting factors are, among others, the spatial scales of the physical domain, the high pressure, and the strong hydrodynamic perturbations, which require vehicles with a combination of persistent autonomy, augmented efficiency, extreme robustness, and advanced control. In light of the most recent developments in soft robotics technologies, we propose that the use of soft robots may aid in addressing the challenges posed by abyssal and wave-dominated environments. Nevertheless, soft robots also allow for fast and low-cost manufacturing, presenting a new potential problem: marine pollution from ubiquitous soft sampling devices. In this study, the technological and scientific gaps are widely discussed, as they represent the driving factors for the development of soft robotics. Offshore industry supports increasing energy demand and the employment of robots on marine assets is growing. Such expansion needs to be sustained by the knowledge of the oceanic environment, where large remote areas are yet to be explored and adequately sampled. We offer our perspective on the development of sustainable soft systems, indicating the characteristics of the existing soft robots that promote underwater maneuverability, locomotion, and sampling. This perspective encourages an interdisciplinary approach to the design of aquatic soft robots and invites a discussion about the industrial and oceanographic needs that call for their application

    Mesobot : An Autonomous Underwater Vehicle for Tracking and Sampling Midwater Targets

    Get PDF
    Mesobot, a new class of autonomous underwater vehicle, will address specific unmet needs for observing slow-moving targets in the midwater ocean. Mesobot will track targets such as zooplankton, fish, and descending particle aggregates using a control system based on stereo cameras and a combination of thrusters and a variable buoyancy system. The vehicle will also be able to collect biogeochemical and environmental DNA (eDNA) samples using a pumped filter sampler

    Soft-Robotic Rover with Electrodynamic Power Scavenging

    Get PDF
    The purpose of studying the capabilities of Electrodynamic Tethers (EDT) and Soft Robotics is to ascertain the feasibility of using cross-cutting EDT and soft robotics technologies to achieve future NASA mission objectives with mass and power budgets orders of magnitude lower than conventional spacecraft. In this context, the Phase I study focuses on three technological elements: the design of a soft-robotic rover that can operate in extraterrestrial oceans, demonstrating feasibility of electrodynamic tethers for power scavenging in the Europa environment, and utilizing electrolysis to power biomimetic propulsion.The Phase I results show that a soft robotic, underwater rover has many advantages over a traditional view of autonomous underwater vehicles. Many of these advantages stem from its ability to collapse or expand the body, which carries two key benefits: (i) cost savings in transport and (ii) buoyancy control. Furthermore, this rover's material offers properties that enable it to survive most oceanic conditions, withstand a likely radiation environment, and retard ice formation. The use of these soft robots under water is very attractive because buoyancy enables very large robots without the need for skeletal structures that limit their shape-changing ability. The prime limitation of soft robots for underwater exploration is their nascent state of development, an issue that this study has begun to address and that we hope to continue in Phase II. The theoretical calculations and experimental investigation on electrodynamic tethers discussed in this report show that their use in saltwater environments is feasible. However, magneto hydrodynamic effects require attention, which will be a priority in Phase II. A possible approach involves magnetic shielding of a portion of the EDT array to generate significant current from imposed alternating magnetic fields. The Phase I experiments show that this approach may enable enough power to be generated for a soft robotic rover of the scale contemplated here. This power is in the range of 1mW to 1W and determines the time required to collect and transmit science data

    An Autonomous Sailboat for Environment Monitoring

    Get PDF
    The marine environment is constantly at risk from coastal urbanization. The deterioration of coastal and marine environments is evidenced by the decline of mangroves and the biodiversity of such environments and increasing recurrences of algal and jellyfish blooms. There is a lack of environmental data especially in developing countries such as Malaysia to determine the sustainability and impact of the current development on coastal resources. We developed an autonomous sailboat that utilizes the Internet of things technology to collect and analyze ocean water quality data for local authorities to obtain insights into the sustainable development of coastal resources. The USV is equipped with sensors, microcontrollers, and a wireless communication module based on ZigBee standards to allow sending water quality data to a gateway located at the shore. The data collected by the USV will be processed by a cloud server and visualized through user applications

    A numerical study of fin and jet propulsions involving fluid-structure interactions

    Get PDF
    Fish swimming is elegant and efficient, which inspires humans to learn from them to design high-performance artificial underwater vehicles. Research on aquatic locomotion has made extensive progress towards a better understanding of how aquatic animals control their flexible body and fin for propulsion. Although the structural flexibility and deformation of the body and fin are believed to be important features to achieve optimal swimming performance, studies on high-fidelity deformable body and fin with complex material behavior, such as non-uniform stiffness distributions, are rare. In this thesis, a fully coupled three-dimensional high-fidelity fluid-structure interaction (FSI) solver is developed to investigate the flow field evolution and propulsion performance of caudal fin and jet propulsion involving body and/or fin deformation. Within this FSI solver, the fluid is resolved by solving unsteady and viscous Navier-Stokes equations based on the finite volume method with a multi-block grid system. The solid dynamics are solved by a nonlinear finite element method. The coupling between the two solvers is achieved in a partitioned approach in which convergence check and sub-iteration are implemented to ensure numerical stability and accuracy. Validations are conducted by comparing the simulation results of classical benchmarks with previous data in the literature, and good agreements between them are obtained. The developed FSI solver is then applied to study the bio-inspired fin and jet propulsion involving body deformation. Specifically, the effect of non-uniform stiffness distributions of fish body and/or fin, key features of fish swimming which have been excluded in most previous studies, on the propulsive performance is first investigated. Simulation results of a sunfish-like caudal fin model and a tuna-inspired swimmer model both show that larger thrust and propulsion efficiency can be achieved by a non-uniform stiffness distribution (e.g., increased by 11.2% and 9.9%, respectively, for the sunfish-like model) compared with a uniform stiffness profile. Despite the improved propulsive e performance, a bionic variable fish body stiffness does not yield fish-like midline kinematics observed in real fish, suggesting that fish movement involves significant active control that cannot be replicated purely by passive deformations. Subsequent studies focus on the jet propulsion inspired by squid locomotion using the developed numerical solver. Simulation results of a two-dimensional inflation-deflation jet propulsion system, whose inflation is actuated by an added external force that mimics the muscle constriction of the mantle and deflation is caused by the release of elastic energy of the structure, suggest larger mean thrust production and higher efficiency in high Reynolds number scenarios compared with the cases in laminar flow. A unique symmetry-breaking instability in turbulent flow is found to stem from irregular internal body vortices, which cause symmetry breaking in the wake. Besides, a three-dimensional squid-like jet propulsion system in the presence of background flow is studied by prescribing the body deformation and jet velocity profiles. The effect of the background flow on the leading vortex ring formation and jet propulsion is investigated, and the thrust sources of the overall pulsed jet are revealed as well. Finally, FSI analysis on motion control of a self-propelled flexible swimmer in front of a cylinder utilizing proportional-derivative (PD) control is conducted. The amplitude of the actuation force, which is applied to the swimmer to bend it to produce thrust, is dynamically tuned by a feedback PD controller to instruct the swimmer to swim the desired distance from an initial position to a target location and then hold the station there. Despite the same swimming distance, a swimmer whose departure location is closer to the cylinder requires less energy consumption to reach the target and hold the position there.Fish swimming is elegant and efficient, which inspires humans to learn from them to design high-performance artificial underwater vehicles. Research on aquatic locomotion has made extensive progress towards a better understanding of how aquatic animals control their flexible body and fin for propulsion. Although the structural flexibility and deformation of the body and fin are believed to be important features to achieve optimal swimming performance, studies on high-fidelity deformable body and fin with complex material behavior, such as non-uniform stiffness distributions, are rare. In this thesis, a fully coupled three-dimensional high-fidelity fluid-structure interaction (FSI) solver is developed to investigate the flow field evolution and propulsion performance of caudal fin and jet propulsion involving body and/or fin deformation. Within this FSI solver, the fluid is resolved by solving unsteady and viscous Navier-Stokes equations based on the finite volume method with a multi-block grid system. The solid dynamics are solved by a nonlinear finite element method. The coupling between the two solvers is achieved in a partitioned approach in which convergence check and sub-iteration are implemented to ensure numerical stability and accuracy. Validations are conducted by comparing the simulation results of classical benchmarks with previous data in the literature, and good agreements between them are obtained. The developed FSI solver is then applied to study the bio-inspired fin and jet propulsion involving body deformation. Specifically, the effect of non-uniform stiffness distributions of fish body and/or fin, key features of fish swimming which have been excluded in most previous studies, on the propulsive performance is first investigated. Simulation results of a sunfish-like caudal fin model and a tuna-inspired swimmer model both show that larger thrust and propulsion efficiency can be achieved by a non-uniform stiffness distribution (e.g., increased by 11.2% and 9.9%, respectively, for the sunfish-like model) compared with a uniform stiffness profile. Despite the improved propulsive e performance, a bionic variable fish body stiffness does not yield fish-like midline kinematics observed in real fish, suggesting that fish movement involves significant active control that cannot be replicated purely by passive deformations. Subsequent studies focus on the jet propulsion inspired by squid locomotion using the developed numerical solver. Simulation results of a two-dimensional inflation-deflation jet propulsion system, whose inflation is actuated by an added external force that mimics the muscle constriction of the mantle and deflation is caused by the release of elastic energy of the structure, suggest larger mean thrust production and higher efficiency in high Reynolds number scenarios compared with the cases in laminar flow. A unique symmetry-breaking instability in turbulent flow is found to stem from irregular internal body vortices, which cause symmetry breaking in the wake. Besides, a three-dimensional squid-like jet propulsion system in the presence of background flow is studied by prescribing the body deformation and jet velocity profiles. The effect of the background flow on the leading vortex ring formation and jet propulsion is investigated, and the thrust sources of the overall pulsed jet are revealed as well. Finally, FSI analysis on motion control of a self-propelled flexible swimmer in front of a cylinder utilizing proportional-derivative (PD) control is conducted. The amplitude of the actuation force, which is applied to the swimmer to bend it to produce thrust, is dynamically tuned by a feedback PD controller to instruct the swimmer to swim the desired distance from an initial position to a target location and then hold the station there. Despite the same swimming distance, a swimmer whose departure location is closer to the cylinder requires less energy consumption to reach the target and hold the position there

    Strengthening Europe's Capability in Biological Ocean Observations

    Get PDF
    This publication is primarily aimed at stakeholders involved in ocean observing, spanning diverse roles from commissioning, managing, funding and coordinating, to developing, implementing, or advising on, ocean observation programmes. Such programmes will have strategic and policy drivers but their main purpose may vary from predominantly researchdriven scientific purposes to environmental monitoring for providing data and reporting to legally-binding regulations or directives. The main focus is on European capabilities but set in a global context with the various actors spanning a variety of geographical scales from national to regional and European. Key stakeholder organizations include environmental or other agencies; marine research institutions, their researchers and operators; international and regional ocean observing initiatives and programmes; national, regional and European policy makers and their advisors; national stations for observations; etc.). It will also be of interest to the wider marine and maritime research and policy community. The main aim of the publication is to increase the relevance of current (and future) European biological ocean observation capacity to strengthen global efforts towards our understanding of the ocean and enhance marine biodiversity conservation, for maintaining a healthy ocean for healthy societies. This document explains why biological ocean observations are needed to assess progress against national and international conservation targets, the Sustainable Development Goals (SDGs), the Blue Growth agenda and to contribute to key EU directives including the Marine Strategy Framework Directive (MSFD). To achieve this, the publication highlights the need of biological ocean observations to reflect clearly defined hypotheses about potential causes of change, including the combined impacts of local and global drivers, and to support the management of our impacts on the ocean. Additionally, it calls for flexible biological ocean observing programmes to capture the relevant drivers operating at multiple spatial scales, by networking and integration of ongoing monitoring programmes, methodological standardization and appropriate policies of data integration and dissemination. It then presents key variables, elements and information products to inform on the status and trends of marine biodiversity

    Fluid Mechanics of Plankton

    Get PDF
    The cooperation between plankton biologists and fluid dynamists has enhanced our knowledge of life within the plankton communities in ponds, lakes, and seas. This book assembled contributions on plankton–flow interactions, with an emphasis on syntheses and/or predictions. However, a wide range of novel insights, reasonable scenarios, and founded critiques are also considered in this book

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp
    • …
    corecore