39,784 research outputs found

    Design and fabrication considerations, numerical modelling, and testing of a MEMS Microgripper

    Get PDF
    Microgrippers play an important role in the manipulation of biological cells and tissues. This paper presents a horizontal electrothermally actuated microgripper that is designed for the handling and deformability characterization of human red blood cells (RBCs). Pathological alterations in the mechanical properties of RBCs have been associated with a number of specific diseases. This has accentuated the significance of analysing the deformability characteristics of RBCs within the biomedical field. A polysilicon microgripper structure was designed and fabricated according to the dimensional specifications imposed by the commercial PolyMUMPsTM fabrication process. The microgripper design was developed and numerically modelled using finite element analysis where coupled electrothermomechanical simulations were carried out in CoventorWare®. The fabrication method is presented in this paper, together with details of the experimental set-up used for the actuation testing. The tip displacement of the microgripper arm when electrothermally actuated is compared with that obtained by means of numerical simulations. Results show that the microgripper arm deflected as designed when electrothermally actuated, with good agreement obtained between simulation and experimental results. This paper also proposes critical design and fabrication considerations that were implied from the experimental campaign performed in this work and that take into account out-of-plane buckling of the hot arm, fracture of the arms in the vicinity of the anchored probe pads, residual stresses, and device stiction. Such considerations are regarded as an important outcome of this work, and they must be thoroughly investigated to mitigate the malfunction or failure of the microgripper.peer-reviewe

    Exploratory Research on MEMS Technology for Air-Conditioning and Heat-Pumps

    Get PDF
    This report details the efforts to exploit micro-electrical-mechanical-systems (MEMS) and micro device technologies to improve control of multi-channel evaporators by reducing maldistribution among channels, and increase capacity and efficiency of current vapor-compression refrigeration chillers and heat-pumps. Besides summarizing the market potential of MEMS technology for use in evaporators and micro-heat-pumps, the report describes the accomplishments of an experimental investigation of refrigerant-side maldistribution in multi-channel plate heat exchangers (PHE's). A special test facility designed for the purpose of studying the maldistribution of refrigerant in evaporators is described in the report. The facility allows maldistribution caused by either normal superheat temperature control, or induced by the user in controlled amounts, to be measured and quantified. Four different techniques were used to detect the presence of liquid droplets in the stream of superheated vapor at the evaporator exit, an indication of maldistributed flow. They are: Helium-Neon laser, beaded thermocouple, static mixer and newly designed heated MEMS sensor. Comparison of the four techniques shows that the MEMS sensor designed and fabricated in this project has the highest potential for indicating maldistribution, manifested by entrained liquid droplets, in multi-channel evaporators. A complete set of test results in the time and frequency domain is show in graphical form in the appendices. The design, fabrication, calibration, and testing of the MEMS serpentine resistance sensor is also reported, along with a control scheme and strategy for implementing the MEMS sensor in multi-channel evaporator systems

    Starting from Scratch: Creating an Information Technology Infrastructure for MEMS-Related Research and Development

    Get PDF
    Micro Electro Mechanical Systems (MEMS) have already revolutionized several industries through miniaturization and cost effective manufacturing capabilities that were never possible before. However, commercially available MEMS products have only scratched the surface of the application areas where MEMS has potential. The complex and highly technical nature of MEMS research and development (R&D) combined with the lack of standards in areas such as design, fabrication and test methodologies, makes creating and supporting a MEMS R&D program a financial and technological challenge. A proper information technology (IT) infrastructure is the backbone of such research and is critical to its success. While the lack of standards and the general complexity in MEMS R&D makes it impossible to provide a “one size fits all” design, a systematic approach, combined with a good understanding of the MEMS R&D environment and the relevant computer-aided design tools, provides a way for the IT architect to develop an appropriate infrastructure

    Performance-Driven Microfabrication-Oriented Methodology for MEMS Conceptual Design with Application in Microfluidic Device Design

    Get PDF
    Performance and manufacturability are two important issues that must be taken into account during MEMS design. Existing MEMS design models or systems follow a process-driven design paradigm, that is, design starts from the specification of process sequence or the customization of foundry-ready process template. There has been essentially no methodology or model that supports generic, high-level design synthesis for MEMS conceptual design. As a result, there lacks a basis for specifying the initial process sequences. To address this problem, this paper proposes a performance-driven, microfabrication-oriented methodology for MEMS conceptual design. A unified behaviour representation method is proposed which incorporates information of both physical interactions and chemical/biological/other reactions. Based on this method, a behavioural process based design synthesis model is proposed, which exploits multidisciplinary phenomena for design solutions, including both the structural components and their configuration for the MEMS device, as well as the necessary substances for the chemical/biological/other reactions. The model supports both forward and backward synthetic search for suitable phenomena. To ensure manufacturability, a strategy of using microfabrication-oriented phenomena as design knowledge is proposed, where the phenomena are developed from existing MEMS devices that have associated MEMS-specific microfabrication processes or foundry-ready process templates. To test the applicability of the proposed methodology, the paper also studies microfluidic device design and uses a micro-pump design for the case study.Singapore-MIT Alliance (SMA

    Programmable latching probe microstructures for wafer testing applications

    Get PDF
    The objective of this thesis is to design a programmable wafer testing array on a single chip based on micro electromechanical systems (MEMS) and VLSI. The wafer-scale integration in this thesis is a programmable array of test probes that are used for engineering test of VLSI and ULSI silicon integrated circuits at the wafer level. This consists of two subsystems (1) the VLSI address circuits used for addressing and controlling the MEMS on the chip and (2) the latching probe MEMS microstructure array that actuates into position for testing VLSI wafers. Each of the subsystems have been designed, analyzed and simulated separately. These structures were then integrated into a demonstration 4x4 array forming a programmable probe card. A 3-micrometer critical dimension is used for both the VLSI CMOS and the MEMS physical design layouts. The fabrication technique for the MEMS microstructure is detailed. A standard 12-mask CMOS technology is used for the fabrication of the address circuits

    Design, fabrication, characterization and reliability study of CMOS-MEMS Lorentz-force magnetometers

    Get PDF
    This article presents several design techniques to fabricate micro-electro-mechanical systems (MEMS) using standard complementary metal-oxide semiconductor (CMOS) processes. They were applied to fabricate high yield CMOS-MEMS shielded Lorentz-force magnetometers (LFM). The multilayered metals and oxides of the back-end-of-line (BEOL), normally used for electronic routing, comprise the structural part of the MEMS. The most important fabrication challenges, modeling approaches and design solutions are discussed. Equations that predict the Q factor, sensitivity, Brownian noise and resonant frequency as a function of temperature, gas pressure and design parameters are presented and validated in characterization tests. A number of the fabricated magnetometers were packaged into Quad Flat No-leads (QFN) packages. We show this process can achieve yields above 95 % when the proper design techniques are adopted. Despite CMOS not being a process for MEMS manufacturing, estimated performance (sensitivity and noise level) is similar or superior to current commercial magnetometers and others built with MEMS processes. Additionally, typical offsets present in Lorentz-force magnetometers were prevented with a shielding electrode, whose efficiency is quantified. Finally, several reliability test results are presented, which demonstrate the robustness against high temperatures, magnetic fields and acceleration shocks

    Development and Packaging of Microsystems Using Foundry Services

    Get PDF
    Micro-electro-mechanical systems (MEMS) are a new and rapidly growing field of research. Several advances to the MEMS state of the art were achieved through design and characterization of novel devices. Empirical and theoretical model of polysilicon thermal actuators were developed to understand their behavior. The most extensive investigation of the Multi-User MEMS Processes (MUMPs) polysilicon resistivity was also performed. The first published value for the thermal coefficient of resistivity (TCR) of the MUMPs Poly 1 layer was determined as 1.25 x 10(exp -3)/K. The sheet resistance of the MUMPs polysilicon layers was found to be dependent on linewidth due to presence or absence of lateral phosphorus diffusion. The functional integration of MEMS with CMOS was demonstrated through the design of automated positioning and assembly systems, and a new power averaging scheme was devised. Packaging of MEMS using foundry multichip modules (MCMs) was shown to be a feasible approach to physical integration of MEMS with microelectronics. MEMS test die were packaged using Micro Module Systems MCM-D and General Electric High Density Intercounect and Chip-on-Flex MCM foundries. Xenon difluoride (XeF2) was found to be an excellent post-packaging etchant for bulk micromachined MEMS. For surface micromachining, hydrofluoric acid (HF) can be used

    System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation

    Get PDF
    Recently, consumer applications have dramatically created the demand for low-cost and compact gyroscopes. Therefore, on the basis of microelectromechanical systems (MEMS) technology, many gyroscopes have been developed and successfully commercialized. A MEMS gyroscope consists of a MEMS device and an electrical circuit for self-oscillation and angular-rate detection. Since the MEMS device and circuit are interactively related, the entire system should be analyzed together to design or test the gyroscope. In this study, a MEMS vibratory gyroscope is analyzed based on the system dynamic modeling; thus, it can be mathematically expressed and integrated into a circuit simulator. A behavioral simulation of the entire system was conducted to prove the self-oscillation and angular-rate detection and to determine the circuit parameters to be optimized. From the simulation, the operating characteristic according to the vacuum pressure and scale factor was obtained, which indicated similar trends compared with those of the experimental results. The simulation method presented in this paper can be generalized to a wide range of MEMS devices111Ysciescopu

    Curvature of BEOL cantilevers in CMOS-MEMS processes

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents the curvature characterization results of released back-end-of-line 5 µm-wide cantilevers for two different 0.18-µm 1P6M complementary metal-oxide semiconductor microelectromechanical systems processes. Results from different runs and lots from each foundry are presented. The methodology and accuracy of the characterization approach, based on optical measurements of test cantilever curvature, are also discussed. Special emphasis is given to the curvature average and variability as a function of the number of stacked layers. Analythical equations for modeling the bending behavior of stacked cantilevers as a function of the tungsten (W) vias that join the metal layers are presented. In addition, the effect of various post-processing conditions and design techniques on the curvature of both single and stacked cantilevers is analyzed. In particular, surpassing certain time-dependent temperature stress conditions after release lead to curvature shifts larger than one order of magnitude. Also, the W via design was found to strongly affect the curvature of the test cantilevers.Peer ReviewedPostprint (author's final draft
    corecore