3,672 research outputs found

    Point-Focus Concentration Compact Telescoping Array: EESP Option 1 Phase Final Report for Public Release

    Get PDF
    Orbital ATK, in partnership with Mark ONeill LLC (MOLLC) and SolAero Technologies Corp., has developed a novel solar array platform, PFC-CTA, which provides a significant advance in performance and cost reduction compared to all currently available space solar systems. PFC refers to the Point Focus Concentration of light provided by MOLLCs thin, flat Fresnel optics. These lenses focus light to a point of approximately 100 times the intensity of the ambient light, onto a solar cell of approximately 1/25th the size of the lens. CTA stands for Compact Telescoping Array1, which is the solar array blanket structural platform originally devised by NASA and currently being advanced by Orbital ATK and partners under NASA and AFRL funding to a projected TRL 5+ by late-2018. The NASA Game Changing Development Extreme Environment Solar Power (EESP) Option 1 Phase study has enabled Orbital ATK to generate and refine component designs, perform component level and system performance analyses, and test prototype hardware of the key elements of PFC-CTA, and increased the TRL of PFC-specific technology elements to TRL ~5. Key performance metrics currently projected are as follows: Scalability from 300 kW per wing (AM0); Specific Power > 250 W/kg (BoL, AM0); Stowage Efficiency > 60 kW/m3; 5:1 margin on pointing tolerance vs. capability; >50% launched cost savings; Wide range of operability between Venus and Saturn by active and/or passive thermal management

    Handbook of space environmental effects on solar cell power systems

    Get PDF
    Space environmental effects on solar cell power systems for earth satellite

    Photovoltaic stand-alone modular systems, phase 2

    Get PDF
    The final hardware and system qualification phase of a two part stand-alone photovoltaic (PV) system development is covered. The final design incorporated modular, power blocks capable of expanding incrementally from 320 watts to twenty kilowatts (PK). The basic power unit (PU) was nominally rated 1.28 kWp. The controls units, power collection buses and main lugs, electrical protection subsystems, power switching, and load management circuits are housed in a common control enclosure. Photo-voltaic modules are electrically connected in a horizontal daisy-chain method via Amp Solarlok plugs mating with compatible connectors installed on the back side of each photovoltaic module. A pair of channel rails accommodate the mounting of the modules into a frameless panel support structure. Foundations are of a unique planter (tub-like) configuration to allow for world-wide deployment without restriction as to types of soil. One battery string capable of supplying approximately 240 ampere hours nominal of carryover power is specified for each basic power unit. Load prioritization and shedding circuits are included to protect critical loads and selectively shed and defer lower priority or noncritical power demands. The baseline system, operating at approximately 2 1/2 PUs (3.2 kW pk.) was installed and deployed. Qualification was successfully complete in March 1983; since that time, the demonstration system has logged approximately 3000 hours of continuous operation under load without major incident
    • …
    corecore