171,359 research outputs found

    Design and Stability of Load-Side Primary Frequency Control in Power Systems

    Get PDF
    We present a systematic method to design ubiquitous continuous fast-acting distributed load control for primary frequency regulation in power networks, by formulating an optimal load control (OLC) problem where the objective is to minimize the aggregate cost of tracking an operating point subject to power balance over the network. We prove that the swing dynamics and the branch power flows, coupled with frequency-based load control, serve as a distributed primal-dual algorithm to solve OLC. We establish the global asymptotic stability of a multimachine network under such type of load-side primary frequency control. These results imply that the local frequency deviations at each bus convey exactly the right information about the global power imbalance for the loads to make individual decisions that turn out to be globally optimal. Simulations confirm that the proposed algorithm can rebalance power and resynchronize bus frequencies after a disturbance with significantly improved transient performance.Comment: 14 pages, 13 figures. To appear in IEEE Transactions on Automatic Contro

    Stability and Frequency Regulation of Inverters with Capacitive Inertia

    Get PDF
    In this paper, we address the problem of stability and frequency regulation of a recently proposed inverter. In this type of inverter, the DC-side capacitor emulates the inertia of a synchronous generator. First, we remodel the dynamics from the electrical power perspective. Second, using this model, we show that the system is stable if connected to a constant power load, and the frequency can be regulated by a suitable choice of the controller. Next, and as the main focus of this paper, we analyze the stability of a network of these inverters, and show that frequency regulation can be achieved by using an appropriate controller design. Finally, a numerical example is provided which illustrates the effectiveness of the method

    Inertia emulation control of VSC-HVDC transmission system

    Get PDF
    The increasing penetration of power electronics interfaced renewable generation (e.g. offshore wind) has been leading to a reduction in conventional synchronous-machine based generation. Most converter-interfaced energy sources do not contribute to the overall power system inertia; and therefore cannot support the system during system transients and disturbances. It is therefore desirable that voltage-source-converter (VSC) based high voltage direct current (HVDC) interfaces, which play an important role in delivery of renewable power to AC systems, could contribute a virtual inertia and provide AC grid frequency support. In this paper, an inertia emulation control (IEC) system is proposed that allows VSC-HVDC system to perform an inertial response in a similar fashion to synchronous machines (SM), by exercising the electro-static energy stored in DC shunt capacitors of the HVDC system. The proposed IEC scheme has been implemented in simulations and its performance is evaluated using Matlab/Simulink

    Inertia emulation control strategy for VSC-HVDC transmission systems

    Get PDF
    There is concern that the levels of inertia in power systems may decrease in the future, due to increased levels of energy being provided from renewable sources, which typically have little or no inertia. Voltage source converters (VSC) used in high voltage direct current (HVDC) transmission applications are often deliberately controlled in order to de-couple transients to prevent propagation of instability between interconnected systems. However, this can deny much needed support during transients that would otherwise be available from system inertia provided by rotating plant
    corecore