68,547 research outputs found

    A mixed-signal integrated circuit for FM-DCSK modulation

    Get PDF
    This paper presents a mixed-signal application-specific integrated circuit (ASIC) for a frequency-modulated differential chaos shift keying (FM-DCSK) communication system. The chip is conceived to serve as an experimental platform for the evaluation of the FM-DCSK modulation scheme, and includes several programming features toward this goal. The operation of the ASIC is herein illustrated for a data rate of 500 kb/s and a transmission bandwidth in the range of 17 MHz. Using signals acquired from the test platform, bit error rate (BER) estimations of the overall FM-DCSK communication link have been obtained assuming wireless transmission at the 2.4-GHz ISM band. Under all tested propagation conditions, including multipath effects, the system obtains a BER = 10-3 for Eb/No lower than 28 dB.Ministerio de Ciencia y TecnologĂ­a TIC2003-0235

    A 13-bit, 2.2-MS/s, 55-mW multibit cascade ΣΔ modulator in CMOS 0.7-ÎŒm single-poly technology

    Get PDF
    This paper presents a CMOS 0.7-ÎŒm ΣΔ modulator IC that achieves 13-bit dynamic range at 2.2 MS/s with an oversampling ratio of 16. It uses fully differential switched-capacitor circuits with a clock frequency of 35.2 MHz, and has a power consumption of 55 mW. Such a low oversampling ratio has been achieved through the combined usage of fourth-order filtering and multibit quantization. To guarantee stable operation for any input signal and/or initial condition, the fourth-order shaping function has been realized using a cascade architecture with three stages; the first stage is a second-order modulator, while the others are first-order modulators - referred to as a 2-1-1mb architecture. The quantizer of the last stage is 3 bits, while the other quantizers are single bit. The modulator architecture and coefficients have been optimized for reduced sensitivity to the errors in the 3-bit quantization process. Specifically, the 3-bit digital-to-analog converter tolerates 2.8% FS nonlinearity without significant degradation of the modulator performance. This makes the use of digital calibration unnecessary, which is a key point for reduced power consumption. We show that, for a given oversampling ratio and in the presence of 0.5% mismatch, the proposed modulator obtains a larger signal-to-noise-plus-distortion ratio than previous multibit cascade architectures. On the other hand, as compared to a 2-1-1single-bit modulator previously designed for a mixed-signal asymmetrical digital subscriber line modem in the same technology, the modulator in this paper obtains one more bit resolution, enhances the operating frequency by a factor of two, and reduces the power consumption by a factor of four.ComisiĂłn Interministerial de Ciencia y TecnologĂ­a TIC97-0580European Commission ESPRIT 879

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    Self-Reconfigurable Analog Arrays: Off-The Shelf Adaptive Electronics for Space Applications

    Get PDF
    Development of analog electronic solutions for space avionics is expensive and lengthy. Lack of flexible analog devices, counterparts to digital Field Programmable Gate Arrays (FPGA), prevents analog designers from benefits of rapid prototyping. This forces them to expensive and lengthy custom design, fabrication, and qualification of application specific integrated circuits (ASIC). The limitations come from two directions: commercial Field Programmable Analog Arrays (FPAA) have limited variability in the components offered on-chip; and they are only qualified for best case scenarios for military grade (-55C to +125C). In order to avoid huge overheads, there is a growing trend towards avoiding thermal and radiation protection by developing extreme environment electronics, which maintain correct operation while exposed to temperature extremes (-180degC to +125degC). This paper describes a recent FPAA design, the Self-Reconfigurable Analog Array (SRAA) developed at JPL. It overcomes both limitations, offering a variety of analog cells inside the array together with the possibility of self-correction at extreme temperatures

    Development of a radiation hard version of the Analog Pipeline Chip APC128

    Get PDF
    The Analog Pipeline Chip (APC) is a low noise, low power readout chip for silicon micro strip detectors with 128 channels containing an analog pipeline of 32 buffers depth. The chip has been designed for operation at HERA with a power dissipation of 300-400 muW per channel and has been used also in several other particle physics experiments. In this paper we describe the development of a radiation hard version of this chip that will be used in the H1 vertex detector for operation at the luminosity upgraded HERA machine. A 128 channel prototyping chip with several amplifier variations has been designed in the radiation hard DMILL technology and measured. The results of various parameter variations are presented in this paper. Based on this, the design choice for the final production version of the APC128-DMILL has been made.Comment: 10 pages, 10 figure

    Online self-repair of FIR filters

    Get PDF
    Chip-level failure detection has been a target of research for some time, but today's very deep-submicron technology is forcing such research to move beyond detection. Repair, especially self-repair, has become very important for containing the susceptibility of today's chips. This article introduces a self-repair-solution for the digital FIR filter, one of the key blocks used in DSPs

    Oscillation-based DFT for Second-order Bandpass OTA-C Filters

    Get PDF
    This document is the Accepted Manuscript version. Under embargo until 6 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s00034-017-0648-9.This paper describes a design for testability technique for second-order bandpass operational transconductance amplifier and capacitor filters using an oscillation-based test topology. The oscillation-based test structure is a vectorless output test strategy easily extendable to built-in self-test. The proposed methodology converts filter under test into a quadrature oscillator using very simple techniques and measures the output frequency. Using feedback loops with nonlinear block, the filter-to-oscillator conversion techniques easily convert the bandpass OTA-C filter into an oscillator. With a minimum number of extra components, the proposed scheme requires a negligible area overhead. The validity of the proposed method has been verified using comparison between faulty and fault-free simulation results of Tow-Thomas and KHN OTA-C filters. Simulation results in 0.25ÎŒm CMOS technology show that the proposed oscillation-based test strategy for OTA-C filters is suitable for catastrophic and parametric faults testing and also effective in detecting single and multiple faults with high fault coverage.Peer reviewedFinal Accepted Versio

    Simplified modelling of air source heat pumps producing detailed results

    Get PDF
    Created by the Building Research Establishment (BRE), the Standard Assessment Procedure (SAP) is the UK Government‟s recommended method of assessing the energy ratings of dwellings. Modelling future complex dwellings, and their servicing systems, will require a more advanced calculation which is as simple as SAP to use but can produce more detailed results. This paper extends a novel advanced dynamic calculation method (IDEAS – Inverse Dynamics based Energy Analysis and Simulation) of assessing the controllability of a building and its servicing systems. IDEAS produces SAP compliant results and allows confident (i.e. calibrated in SAP) predictions to be made regarding the impact of novel heating and renewable energy systems. This paper describes the addition of an Air Source Heat Pump (ASHP) model to IDEAS. This allows for detailed analysis to be made of ASHPs in a SAP compliant framework. The benefits of using the IDEAS method is highlighted with capabilities outwith the scope of SAP also possible. For example, IDEAS can be used as sizing tool for a heating system in a building
    • 

    corecore