27,182 research outputs found

    Presenting the networked home: a content analysis of promotion material of Ambient Intelligence applications

    Get PDF
    Ambient Intelligence (AmI) for the home uses information and communication technologies to make users’ everyday life more comfortable. AmI is still in its developmental phase and is headed towards the first stages of diffusion. \ud Characteristics of AmI design can be observed, among others, in the promotion material of initial producers. A literature study revealed that AmI originally envisioned a central role for the user, convenience that AmI offers them and that attention should be paid to critical policy issues such as privacy and a potential loss of freedom. A content analysis of current promotion material of several high-tech companies revealed that these original ideas are not all reflected in the material. Attributes which were used most in the promotion material were ‘connectedness’, ‘control’, ‘easiness’ and ‘personalization’. An analysis of the pictures in the promotion material showed that almost half of the pictures contained no humans but appliances. These results only partly correspond to the original vision on AmI, since the emphasis is now on technology. The results represent a serious problem, since both users, as well as critical policy issues are underexposed in the current promotion material

    Design and Implementation of a Wireless Sensor Network for Smart Homes

    Full text link
    Wireless sensor networks (WSNs) have become indispensable to the realization of smart homes. The objective of this paper is to develop such a WSN that can be used to construct smart home systems. The focus is on the design and implementation of the wireless sensor node and the coordinator based on ZigBee technology. A monitoring system is built by taking advantage of the GPRS network. To support multi-hop communications, an improved routing algorithm based on the Dijkstra algorithm is presented. Preliminary simulations have been conducted to evaluate the performance of the algorithm.Comment: International Workshop on Mobile Cyber-Physical Systems (MobiCPS 2010), in conjunction with UIC2010, IEEE, Xi'an, China, 26 - 29 October, 201

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    The simplicity project: easing the burden of using complex and heterogeneous ICT devices and services

    Get PDF
    As of today, to exploit the variety of different "services", users need to configure each of their devices by using different procedures and need to explicitly select among heterogeneous access technologies and protocols. In addition to that, users are authenticated and charged by different means. The lack of implicit human computer interaction, context-awareness and standardisation places an enormous burden of complexity on the shoulders of the final users. The IST-Simplicity project aims at leveraging such problems by: i) automatically creating and customizing a user communication space; ii) adapting services to user terminal characteristics and to users preferences; iii) orchestrating network capabilities. The aim of this paper is to present the technical framework of the IST-Simplicity project. This paper is a thorough analysis and qualitative evaluation of the different technologies, standards and works presented in the literature related to the Simplicity system to be developed

    SensorCloud: Towards the Interdisciplinary Development of a Trustworthy Platform for Globally Interconnected Sensors and Actuators

    Get PDF
    Although Cloud Computing promises to lower IT costs and increase users' productivity in everyday life, the unattractive aspect of this new technology is that the user no longer owns all the devices which process personal data. To lower scepticism, the project SensorCloud investigates techniques to understand and compensate these adoption barriers in a scenario consisting of cloud applications that utilize sensors and actuators placed in private places. This work provides an interdisciplinary overview of the social and technical core research challenges for the trustworthy integration of sensor and actuator devices with the Cloud Computing paradigm. Most importantly, these challenges include i) ease of development, ii) security and privacy, and iii) social dimensions of a cloud-based system which integrates into private life. When these challenges are tackled in the development of future cloud systems, the attractiveness of new use cases in a sensor-enabled world will considerably be increased for users who currently do not trust the Cloud.Comment: 14 pages, 3 figures, published as technical report of the Department of Computer Science of RWTH Aachen Universit

    Analysis of Intelligent Living for Elderly in Smart Aging

    Get PDF
    This paper conducts an in-depth investigation into smart home systems and their developmental trajectory. It systematically dissects the constituent elements of smart homes, encompassing the perception layer, transmission layer, platform layer, and application layer. The paper analyzes the intelligent living forms and types for elderly individuals at home, including environmentally proactive monitoring and types of intelligent living such as life assistance, health and safety, and leisure and entertainment. The research explores interaction modes in smart home systems, incorporating mechanical interaction, voice interaction, and screen interaction. It underscores the significance of screen interaction as a primary control method in the intelligent living of elderly individuals at home. This paper provides profound theoretical foundations and practical guidance for the intelligent living of elderly individuals at home

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work
    corecore