628 research outputs found

    Modular Human-in-the-loop Design Framework Based on Human Factors

    Get PDF
    Human-in-the-loop design framework introduced in this dissertation utilizes Digital Human Modeling (DHM) to incorporate Human Factors Engineering (HFE) design principles early in design process. It embodies scientific methods (e.g., mathematics) and artistic approaches (e.g., visualization) to assess human well-being and overall system performance. This framework focuses not only on ergonomics assessments but also actual design process including, but not limited to, concept development, structural integrity and digital prototyping. It addresses to three major limitations found in HFE literature and practices

    Survey of Human Models for Verification of Human-Machine Systems

    Full text link
    We survey the landscape of human operator modeling ranging from the early cognitive models developed in artificial intelligence to more recent formal task models developed for model-checking of human machine interactions. We review human performance modeling and human factors studies in the context of aviation, and models of how the pilot interacts with automation in the cockpit. The purpose of the survey is to assess the applicability of available state-of-the-art models of the human operators for the design, verification and validation of future safety-critical aviation systems that exhibit higher-level of autonomy, but still require human operators in the loop. These systems include the single-pilot aircraft and NextGen air traffic management. We discuss the gaps in existing models and propose future research to address them

    Autonomous, Context-Sensitive, Task Management Systems and Decision Support Tools I: Human-Autonomy Teaming Fundamentals and State of the Art

    Get PDF
    Recent advances in artificial intelligence, machine learning, data mining and extraction, and especially in sensor technology have resulted in the availability of a vast amount of digital data and information and the development of advanced automated reasoners. This creates the opportunity for the development of a robust dynamic task manager and decision support tool that is context sensitive and integrates information from a wide array of on-board and off aircraft sourcesa tool that monitors systems and the overall flight situation, anticipates information needs, prioritizes tasks appropriately, keeps pilots well informed, and is nimble and able to adapt to changing circumstances. This is the first of two companion reports exploring issues associated with autonomous, context-sensitive, task management and decision support tools. In the first report, we explore fundamental issues associated with the development of an integrated, dynamic, flight information and automation management system. We discuss human factors issues pertaining to information automation and review the current state of the art of pilot information management and decision support tools. We also explore how effective human-human team behavior and expectations could be extended to teams involving humans and automation or autonomous systems

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 324)

    Get PDF
    This bibliography lists 200 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Virtual reality: A human centered tool for improving Manufacturing

    Get PDF
    International audienceManufacturing is using Virtual Reality tools to enhance the product life cycle. Their definitions are still in flux and it is necessary to define their connections. Thus, firstly, we will introduce more closely some definitions where we will find that, if the Virtual manufacturing concepts originate from machining operations and evolve in this manufacturing area, there exist a lot of applications in different fields such as casting, forging, sheet metalworking and robotics (mechanisms). From the recent projects in Europe or in USA, we notice that the human perception or the simulation of mannequin is more and more needed in both fields. In this context, we have isolated some applications as ergonomic studies, assembly and maintenance simulation, design or training where the virtual reality tools can be applied. Thus, we find out a family of applications where the virtual reality tools give the engineers the main role in the optimization process. We will illustrate our paper by several examples where virtual reality interfaces are used and combined with optimization tools as multi-agent systems

    Operators’ Adaption to Unreliability of Alarm Systems: A Performance and Eye-Tracking Analysis

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Operators in complex environments are supported by alarm-systems that indicate when to shift attention to certain tasks. As alarms are not perfectly reliable, operators have to select appropriate strategies of attention allocation in order to compensate for unreliability and maintain overall performance. This study investigates how humans adapt to differing alarm-reliabilities. Within a multi-tasking flight simulation, participants were randomly assigned to four alarm-reliability conditions (68.75%, 75%, 87.5%, 93.75%), and a manual control group. In experimental conditions, one out of three subtasks was supported by an alarm-system. Compared to manual control, all experimental groups benefited from alarms in the supported task, with best results for the highest reliability condition. However, analyses of performance and eye-tracking data revealed that the benefit of the lowest reliability group was associated with an increased attentional effort, a more demanding attention allocation strategy, and a declined relative performance in a non-supported task. Results are discussed in the context of recent research

    Augmenting low-fidelity flight simulation training devices via amplified head rotations

    Get PDF
    Due to economic and operational constraints, there is an increasing demand from aviation operators and training manufacturers to extract maximum training usage from the lower fidelity suite of flight simulators. It is possible to augment low-fidelity flight simulators to achieve equivalent performance compared to high-fidelity setups but at reduced cost and greater mobility. In particular for visual manoeuvres, the virtual reality technique of head-tracking amplification for virtual view control enables full field-of-regard access even with limited field-of-view displays. This research quantified the effects of this technique on piloting performance, workload and simulator sickness by applying it to a fixed-base, low-fidelity, low-cost flight simulator. In two separate simulator trials, participants had to land a simulated aircraft from a visual traffic circuit pattern whilst scanning for airborne traffic. Initially, a single augmented display was compared to the common triple display setup in front of the pilot. Starting from the base leg, pilots exhibited tighter turns closer to the desired ground track and were more actively conducting visual scans using the augmented display. This was followed up by a second experiment to quantify the scalability of augmentation towards larger displays and field of views. Task complexity was increased by starting the traffic pattern from the downwind leg. Triple displays in front of the pilot yielded the best compromise delivering flight performance and traffic detection scores just below the triple projectors but without an increase in track deviations and the pilots were also less prone to simulator sickness symptoms. This research demonstrated that head augmentation yields clear benefits of quick user adaptation, low-cost, ease of systems integration, together with the capability to negate the impact of display sizes yet without incurring significant penalties in workload and incurring simulator sickness. The impact of this research is that it facilitates future flight training solutions using this augmentation technique to meet budgetary and mobility requirements. This enables deployment of simulators in large numbers to deliver expanded mission rehearsal previously unattainable within this class of low-fidelity simulators, and with no restrictions for transfer to other training media

    Immersive Kansei Engineering : A New Method and its Potentials

    Get PDF
    Product development becomes more and more complex. Products obtain more and more functions and at the same time they must be still attractive for the customers to ensure a successful product launch. To predict their acceptance and to gain knowledge on how to design attractive products new methods are developed in the field of the emotional design. Such a method is the Kansei Engineering, which collects the customers hidden subjective needs and their translation into concrete products. We present and validate a new form of the Kansei Engineering method for emotional assessment by the customers during the product development, based on an interactive product experience in Virtual Reality. The major novelty of our kind of method is the use of immersive representations which focuses on both, the product itself and its environmental context, too. Customers experience these virtual representations quite dynamically and with this freely describe their emotional influence on them. We come to the conclusion that more reliable emotional customer feedback can be acquired through the implementation of the proposed context paradigm shift. The fusion of product and environmental context enables the simultaneous role of the customer as a subject (actor) and an object (observer) in the virtual world, thus promoting reliable emotional reactions. Despite of some disadvantages, we propose Immersive Kansei Engineering as a reliable method for emotional product assessment by the customer

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 156)

    Get PDF
    This bibliography lists 170 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1976

    NASA's Single-Pilot Operations Technical Interchange Meeting: Proceedings and Findings

    Get PDF
    Researchers at the National Aeronautics and Space Administration (NASA) Ames Research Center and Langley Research Center are jointly investigating issues associated with potential concepts, or configurations, in which a single pilot might operate under conditions that are currently reserved for a minimum of two pilots. As part of early efforts, NASA Ames Research Center hosted a technical interchange meeting in order to gain insight from members of the aviation community regarding single-pilot operations (SPO). The meeting was held on April 10-12, 2012 at NASA Ames Research Center. Professionals in the aviation domain were invited because their areas of expertise were deemed to be directly related to an exploration of SPO. NASA, in selecting prospective participants, attempted to represent various relevant sectors within the aviation domain. Approximately 70 people representing government, academia, and industry attended. A primary focus of this gathering was to consider how tasks and responsibilities might be re-allocated to allow for SPO
    corecore