35,432 research outputs found

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    An experimental laboratory bench setup to study electric vehicle antilock braking / traction systems and their control

    Get PDF
    This paper describes the preliminary research and implementation of an experimental test bench set up for an electric vehicle antilock braking system (ABS)/traction control system (TCS) representing the dry, wet and icy road surfaces. A fuzzy logic based controller to control the wheel slip for electric vehicle antilock braking system is presented. The test facility comprised of an induction machine load operating in the generating region. The test facility was used to simulate a variety of tire/road μ-σ driving conditions, eliminating the initial requirement for skid-pan trials when developing algorithms. Simulation studies and results are provided

    Implementing SVPWM Technique to an Axial Flux Permanent Magnet Synchronous Motor Drive with Internal Model Current Controller

    Get PDF
    This paper presents a study of axial flux permanent magnet synchronous motor (AFPMSM) drive system. An internal model control (IMC) strategy is introduced to control the AFPMSM drive through currents, leading to an extension of PI control with integrators added in the off-diagonal elements to remove the cross-coupling effects between the applied voltages and stator currents in a feed-forward manner. The reference voltage is applied through a space vector pulse width modulation (SVPWM) unit. A diverse set of test scenarios has been realized to comparatively evaluate the state estimation of the sensor-less AFPMSM drive performances under the implemented IMCbased control regime using a SVPWM inverter. The resulting MATLAB simulation outcomes in the face of no-load, nominal load and speed reversal clearly illustrate the well-behaved performances of IMC controller and SVPWM technique to an Axial Flux PM Motor Drive system

    To develop an efficient variable speed compressor motor system

    Get PDF
    This research presents a proposed new method of improving the energy efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of VSD are reviewed with emphasis on the efficiency and power losses associated with the operation of the variable speed compressor motor drive, particularly at low speed operation.The efficiency of induction motor when operated at rated speed and load torque is high. However at low load operation, application of the induction motor at rated flux will cause the iron losses to increase excessively, hence its efficiency will reduce dramatically. To improve this efficiency, it is essential to obtain the flux level that minimizes the total motor losses. This technique is known as an efficiency or energy optimization control method. In practice, typical of the compressor load does not require high dynamic response, therefore improvement of the efficiency optimization control that is proposed in this research is based on scalar control model.In this research, development of a new neural network controller for efficiency optimization control is proposed. The controller is designed to generate both voltage and frequency reference signals imultaneously. To achieve a robust controller from variation of motor parameters, a real-time or on-line learning algorithm based on a second order optimization Levenberg-Marquardt is employed. The simulation of the proposed controller for variable speed compressor is presented. The results obtained clearly show that the efficiency at low speed is significant increased. Besides that the speed of the motor can be maintained. Furthermore, the controller is also robust to the motor parameters variation. The simulation results are also verified by experiment

    Sliding modes in power electronics and motion control

    Get PDF
    In the paper the general approach to motion control systems in the sliding mode framework is discussed in details. It has been shown that, due to the fact that a motion control system with n d.o.f may be mathematically formulated in a unique way as a system composed on n 2 d.o.f systems, design of such a system may be formulated in a unique way as a requirement that the generalized coordinates must satisfy certain algebraic constrain. Such a formulation leads naturally to sliding mode methods to be applied where sliding mode manifolds are selected to coincide with desired constraints on the generalized coordinates. In addition to the above problem the design of full observer for IM based drive is discussed

    Development of Urban Electric Bus Drivetrain

    Get PDF
    The development of the drivetrain for a new series of urban electric buses is presented in the paper. The traction and design properties of several drive variants are compared. The efficiency of the drive was tested using simulation calculations of the vehicle rides based on data from real bus lines in Prague. The results of the design work and simulation calculations are presented in the paper

    Observer-based Fault Detection and Diagnosis for Mechanical Transmission Systems with Sensorless Variable Speed Drives

    Get PDF
    Observer based approaches are commonly embedded in sensorless variable speed drives for the purpose of speed control. It estimates system variables to produce errors or residual signals in conjunction with corresponding measurements. The residual signals then are relied to tune control parameters to maintain operational performance even if there are considerable disturbances such as noises and component faults. Obviously, this control strategy outcomes robust control performances. However, it may produce adverse consequences to the system when faults progress to high severity. To prevent the occurrences of such consequences, this research proposes the utilisation of residual signals as detection features to raise alerts for incipient faults. Based on a gear transmission system with a sensorless variable speed drive (VSD), observers for speed, flux and torque are developed for examining their residuals under two mechanical faults: tooth breakage with different degrees of severities and shortage of lubricant at different levels are investigated. It shows that power residual signals can be based on to indicate different faults, showing that the observer based approaches are effective for monitoring VSD based mechanical systems. Moreover, it also shows that these two types fault can be separated based on the dynamic components in the voltage signals

    Building a Driving Simulator as an Electric Vehicle Hardware Development Tool

    Get PDF
    Driving simulators have been used to support the development of new vehicle systems for many years. The rise of electric vehicles (EVs) as a means of reducing carbon emissions has lead to the emergence of a number of new design challenges related to the performance of EV components and the flow of power under a variety of circumstances. In this paper we describe the integration of an EV drive train test system with a driving simulator to allow the performance of EV systems to be investigated while under the control of real drivers in simulated scenarios. Such a system offers several potential benefits. The performance of EV drive trains can be evaluated subjectively by real world users while the electrical and mechanical properties can be tested under a variety of conditions which would be difficult to replicate using standard drive cycles

    Alone Self-Excited Induction Generators

    Get PDF
    In recent years, some converter structures and analyzing methods for the voltage regulation of stand-alone self-excited induction generators (SEIGs) have been introduced. However, all of them are concerned with the three-phase voltage control of three-phase SEIGs or the single-phase voltage control of single-phase SEIGs for the operation of these machines under balanced load conditions. In this paper, each phase voltage is controlled separately through separated converters, which consist of a full-bridge diode rectifier and one-IGBT. For this purpose, the principle of the electronic load controllers supported by fuzzy logic is employed in the two-different proposed converter structures. While changing single phase consumer loads that are independent from each other, the output voltages of the generator are controlled independently by three-number of separated electronic load controllers (SELCs) in two different mode operations. The aim is to obtain a rated power from the SEIG via the switching of the dump loads to be the complement of consumer load variations. The transient and steady state behaviors of the whole system are investigated by simulation studies from the point of getting the design parameters, and experiments are carried out for validation of the results. The results illustrate that the proposed SELC system is capable of coping with independent consumer load variations to keep output voltage at a desired value for each phase. It is also available for unbalanced consumer load conditions. In addition, it is concluded that the proposed converter without a filter capacitor has less harmonics on the currents
    corecore