87 research outputs found

    Towards the Internet of Augmented Things: An Open-source Framework to Interconnect IoT Devices and Augmented Reality Systems

    Get PDF
    [Abstract] The latest Augmented Reality (AR) and Mixed Reality (MR) systems are able to provide innovative methods for user interaction, but their full potential can only be achieved when they are able to exchange bidirectional information with the physical world that surround them, including the objects that belong to the Internet of Things (IoT). The problem is that elements like AR display devices or IoT sensors/actuators often use heterogeneous technologies that make it difficult to intercommunicate them in an easy way, thus requiring a high degree of specialization to carry out such a task. This paper presents an open-source framework that eases the integration of AR and IoT devices as well as the transfer of information among them, both in real time and in a dynamic way. The proposed framework makes use of widely used standard protocols and open-source tools like MQTT, HTTPS or Node-RED. In order to illustrate the operation of the framework, this paper presents the implementation of a practical home automation example: an AR/MR application for energy consumption monitoring that allows for using a pair of Microsoft HoloLens smart glasses to interact with smart power outlets.Navantia-UDC Joint Research Unit; IN853B-2018/0

    Using Bluetooth Low Energy devices to monitor visitor activity in remote amenity spaces

    Get PDF
    Tracking of pedestrian behaviour, particularly route selection and temporal behaviours, can be difficult to undertake. This is especially true of studies at a community or campus level where the anonymity of pedestrians can be difficult to protect. The introduction of the EU’s General Data Protection Regulations 2016 (GDPR) has increased the complexity of this challenge. Advances in Bluetooth Low Energy (BLE) technology in recent years have increased the potential to monitor human behaviour by tracking and triangulating pedestrians. This paper describes an experiment undertaken along The Great South Wall at the Port of Dublin, which is considered a leading amenity location. Monitoring of visitor behaviour in places of this type can provide valuable information about the use of this and other public resources. The aims of this study were to test two prototypes to: i) determine the direction of participants carrying BLE devices, ii) determine the capabilities of two BLE scanning prototypes, (ESP32 & Raspberry Pi3), iii) test the ability of detecting a small number of BLE devices simultaneously while minimising interference or loss of passers-by data, iv) to investigate the use of a hash encoding scheme to anonymise BLE device identifiers. The findings show that the direction of the visitors to the pier can be detected by correlating the received signal strength indicator (RSSI) from multiple Bluetooth scanning devices and this can work where scanning devices are as close as 10m apart. The locations of the BLE scanners has a slight effect on detecting the RSSI from different distances and the distance between scanners needs to be considered to facilitate accurate measurement of direction. As a pier like the South Wall has only one entrance and exit point, this approach can also be used to determine the length of time spent on the pier. The technical performance of the two BLE scanners was also reviewed and the ESP32 was shown to have significantly lower power consumption with only a slight decrease in performance. Finally, it was shown that the BLE scanners can detect multiple carried BLE devices successfully without interference or loss of data as long as those devices are within range of the BLE scanners

    Hunting the hunters:Wildlife Monitoring System

    Get PDF

    Creating the Internet of Augmented Things: An Open-Source Framework to Make IoT Devices and Augmented and Mixed Reality Systems Talk to Each Other

    Get PDF
    [Abstract] Augmented Reality (AR) and Mixed Reality (MR) devices have evolved significantly in the last years, providing immersive AR/MR experiences that allow users to interact with virtual elements placed on the real-world. However, to make AR/MR devices reach their full potential, it is necessary to go further and let them collaborate with the physical elements around them, including the objects that belong to the Internet of Things (IoT). Unfortunately, AR/MR and IoT devices usually make use of heterogeneous technologies that complicate their intercommunication. Moreover, the implementation of the intercommunication mechanisms requires involving specialized developers with have experience on the necessary technologies. To tackle such problems, this article proposes the use of a framework that makes it easy to integrate AR/MR and IoT devices, allowing them to communicate dynamically and in real time. The presented AR/MR-IoT framework makes use of standard and open-source protocols and tools like MQTT, HTTPS or Node-RED. After detailing the inner workings of the framework, it is illustrated its potential through a practical use case: a smart power socket that can be monitored and controlled through Microsoft HoloLens AR/MR glasses. The performance of such a practical use case is evaluated and it is demonstrated that the proposed framework, under normal operation conditions, enables to respond in less than 100 ms to interaction and data update requests.Xunta de Galicia; IN853B-2018/0

    Sistema de Telemetría basado en redes WSN (Wireless Sensor Network) para el Internet de las Cosas (IoT)

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e Comunicación en Redes Móbiles. 553V01[Abstract] The Internet of Things (IoT) involves a wide variety of heterogeneous technologies and resource-constrained devices that interact with each other. Due to such constraints, IoT devices usually require lightweight protocols that optimize the use of resources and energy consumption. Among the di erent commercial IoT devices, Bluetooth and BLE based beacons, which broadcast periodically certain data packets to notify their presence, have experienced a remarkable growth, specially due to their application in indoor positioning systems. As a solution to this problem, this thesis contributes with a general architecture of telemetry, di erent scenarios to access the cloud computing, guidelines for the selection of components in the di erent domains of an IoT-based architecture and examples of implementation of a WSN through a testbed based on the use of smart sensors with Bluetooth Low Energy. In the example shown, an IoT gateway is developed on an Android smartphone. This gateway integrates an MQTT client and has the necessary functionalities to pack the data from the sensors and send them to the MQTT broker residing in a cloud computing. There is also a friendly interface available for a local user to monitor and control the WSN created. Some experiments were carried out to demonstrate the functionality, speed and stability of the proposed gateway, to be used in this and other application domains. This thesis proposes a family of protocols named LP4S that provides fast responses and enables plug-and-play mechanisms that allow IoT telemetry systems to discover new nodes and to describe and auto-register the sensors and actuators connected to a beacon. Thus, three protocols are de ned depending on the beacon hardware characteristics: LP4S-6 (for resource-constraint beacons), LP4S-X (for more powerful beacons) and LP4S-J (for beacons able to run complex rmware). In order to demonstrate the capabilities of the designed protocols, the most restrictive (LP4S-6) is tested after implementing it for a telemetry application in a beacon based on Eddystone (Google's open beacon format). Thus, the beacon speci cation is extended in order to increase its ability to manage unlimited sensors in a telemetry system without interfering in its normal operation with Eddystone frames. The performed experiments show the feasibility of the proposed solution and its superiority, in terms of latency and energy consumption, with respect to approaches based on Generic Attribute Pro le (GATT) when multiple users connect to a mote or in scenarios where latency is not a restriction, but where low-energy consumption is essential. This thesis also presents a Virtual Transducer Electronic Data Sheet (VTEDS) based framework for the development of intelligent sensor nodes with plug-and-play capabilities in order to contribute to the evolution of the Internet of Things (IoT) towards the Web of Things (WoT). It makes use of new lightweight protocols that allow the sensors to self-describe, auto-calibrate and auto-register. Such protocols enable the development of novel IoT solutions while guaranteeing low latency, low power consumption and the required QoS. In order to evaluate the performance of the system, it was tested when using Bluetooth Low Energy (BLE) and Ethernet-based smart sensors in di erent scenarios. Speci cally, user experience was quanti ed empirically (i.e., how fast the system show collected data to a user). The obtained results show that the proposed VTED architecture is really fast, being some smart sensors (located in Europe) able to self-register and self-con gure in a remote cloud (in South America) in less than 3 s and to display data to remote users in less than 2 s. Finally, technological trends for the development of intelligent sensors in the eld of the current Internet of things are shown, based on communication technologies and protocols, hardware, multi-protocol and multi-network devices, operating systems, on-line development environments and programming languages of the rmware of said sensor nodes. All the scienti c contributions of this thesis are re ected in the design of a precision agriculture project, to control the irrigation of a banana plantation in an automated way. The aforementioned project is still in execution, although progress in its implementation is shown in the last chapter.[Resumen] El Internet de las cosas (IoT) involucra una amplia variedad de tecnologías heterogéneas y dispositivos con recursos limitados que interactúan entre sÍ. Debido a tales restricciones, los dispositivos de IoT generalmente requieren protocolos livianos que optimicen el uso de los recursos y el consumo de energía. Entre los diferentes dispositivos comerciales de IoT, los beacons basados en Bluetooth y BLE, que transmiten periódicamente ciertos paquetes de datos para notificar su presencia, han experimentado un notable crecimiento, especialmente debido a su aplicación en sistemas de posicionamiento en interiores. Como solución a esta problemática esta tesis aporta con una arquitectura general de telemetría, diferentes escenarios para acceder a la cloud computing, guías de selección de componentes en los diferentes dominios de una arquitectura basada en IoT y ejemplos de implementación de una WSN a través de un testbed basado en el uso de sensores inteligentes con Bluetooth Low Energy. En el ejemplo mostrado se desarrolla un gateway IoT sobre un teléfono inteligente Android. Este gateway integra un cliente MQTT y dispone de las funcionalidades necesarias para empaquetar los datos de los sensores y enviarlos hacia el broker MQTT residente en una cloud computing. También se dispone de una interfaz amigable para que un usuario local pueda monitorear y controlar la WSN creada. Algunas experimentos fueron llevados a cabo paJ'a demostrar la funcionalidad, rapidez y estabilidad del gateway propuesto, para ser usado en este y otros dominios de aplicación. Corno parte de las soluciones planteadas en esta tesis, se propone una familia de protocolos denominada Lightweight Protocol for Sensors (LP4S) que proporciona respuestas rápidas y habilita los mecanismos plug-and-play que permiten a los sistemas de telemetría IoT descubrir nuevos nodos y describir y registrar automáticamente los sensores y actuadores conectados a un beacon. Por lo tanto, se definen tres protocolos dependiendo de las características de hardware del beacon: LP4S-6 (para beacons de recursos restringidos), LP4S-X (para beacons más potentes) y LP4S-J (para beacons capaces de ejecutar firmware complejo). Para demostrar las capacidades de los protocolos diseñados, el más restrictivo (LP4S-6) se prueba después de implementarlo para una aplicación de telemetría en un beacon basado en Eddystone (formato de beacon abierto de Google). Por lo tanto, la especificación del beacon se amplía para aumentar su capacidad de administrar sensores ilimitados en un sistema de telemetría sin interferir en su funcionamiento normal con las tramas Eddystone. Los experimentos realizados muestran la viabilidad de la solución propuesta y su superioridad, en términos de latencia y consumo de energía, con respecto a los enfoques basados en el perfil genérico de atributos (GATT) cuando múltiples usuarios se conectan a un sensor inteligente o en escenarios donde la latencia no es una restricción, pero el bajo consumo de energía es esencial. Se presenta además un framework basado en TEDS virtuales (VTEDS) para el desarrollo de nodos de sensores inteligentes con capacidades plug-and-play para contribuir a la evolución del Internet de las Cosas (IoT) hacia la Web de las Cosas (WoT). En el sistema propuesto se utilizan los protocolos livianos, que hemos desarrollado, para que los sensores se auto-describan, auto-calibren Y se auto-registren automáticamente. Dichos protocolos permiten el desarrollo de nuevas soluciones de IoT al tiempo que garantizan baja latencia, bajo consumo de energía y la QoS requerida. Para evaluar el rendimiento del sistema, se usaron sensores Bluetooth Low Energy (BLE) Y basados en Ethernet en diferentes escenarios. Específicamente, la experiencia del usuario se cuantificó empíricamente (es decir, qué tan rápido el sistema muestra los datos recopilados a un usuario). Los resultados obtenidos muestran que la arquitectura VTED propuesta es realmente rápida, ya que algunos sensores inteligentes (ubicados en Europa) pueden auto-registrarse Y auto-configurarse en una cloud remota (en América del Sur) en menos de 3s y mostrar datos de los sensores a usuarios remotos en menos de 2s. Finalmente, se muestran las tendencias tecnológicas para el desarrollo de sensores inteligentes en el ámbito del Internet de las cosas actual, en función de las tecnologías Y protocolos de comunicación, hardware, dispositivos multi-protocolos, sistemas operativos, ambientes de desarrollo on-line y lenguajes de programación del firmware de dichos nodos sensores. Todos los aportes científicos de esta tesis son reflejadas en el diseño de un proyecto de agricultura de precisión, para controlar el riego de una plantación de banano de forma automatizada. El proyecto citado aún se encuentra en ejecución, no obstante los avances de implementación del mismo son mostrados en el último capítulo.[Resumo] A Internet das Cousas (IoT) implica unha ampla variedade de tecnoloxÍas e dispositivos con recursos limitados interactúan heteroxéneos. Debido a estas condicións, os dispositivos de Internet das cousas en xeral, esixen protocolos leves que optimizan o uso de recursos e consumo de enerxía. Entre os moitos dispositivos comerciais IDC, balizas baseado Bluetooth e ble, que transmiten periodicamente determinados paquetes de datos para notificar a súa presenza, presentan un crecemento significativo, sobre todo debido á súa aplicación en sistemas de posicionamento internos. Como solución a este problema desta tese ofrece un xeneral arquitectura telemetría escenarios diferentes para acceder a computación en nube, orienta a selección de compoñentes nos diferentes ámbitos de unha economía baseada en Internet das cousas e exemplos de posta en marcha dunha WSN través da arquitectura cun testbed baseado no uso de sensores intelixentes con Bluetooth Low Energy. No exemplo que se mostra, unha pasarela IoT está desenvolvida nun teléfono intelixente con Android. Este portal integra un cliente e ten MQTT necesario para embalaxe os datos dos sensores e envialos para o corrector MQTT residente en capacidades de computación en nube. Hai tamén unha interface amigable dispoñible para que un usuario local monitor e controle o WSN creado. Algunhas experiencias foron realizadas para demostrar a funcionalidade, a velocidade ea estabilidade do porto de conexión proposto, para uso nesta e out ros dominios de aplicación. Como parte das solucións propostas nesta tese, unha familia de protocolos chamados LP4S dando respostas rápidas proposta e permitir mecanismos de plug-and-play que permiten sistemas IDC telemetría descubrir novos nós e describir e automaticamente gravar os· sensores e actuadores conectados a un faro. LP4S-6 (por balizas recursoconstrangidos), LP4S-X (por balizas máis fortes) e LP4S-J (por balizas capaces de execución do firmware complexo): Por conseguinte, tres protocolos, dependendo das . características de hardware baliza definida. Para demostrar as capacidades de protocolos deseñados, as máis restritivas (LP4S-6) é probada tras a posta en marcha dunha solicitude de Eddystone baseada telemetría (formato aberto faro de Google) Beacon. Polo tanto, o faro especificación expande para aumentar a súa capacidade de xestionar cadros Eddystone. As experiencias mostran a viabilidade da solución proposta ea súa superioridade en canto a consumo de latencia e de potencia en comparación coas propostas baseadas no perfil de atributo xenérico (GATT) cando varios usuarios conectarse a un sensor intelixente ou escenarios onde a latencia non é unha restrición, pero onde o consumo de enerxía é esencial. baseado Teds virtuais (VTEDS) para o desenvolvemento de nós sensores intelixentes con plug-and-play para contribuír á evolución de Internet das Cousas (Internet das cousas) á Web of Things (WOT) cadro tamén se mostra. Nos protocolos leves sistema proposto, realizamos son usados para que os sensores son propio descrición, auto-calibración e auto-rexistrar automaticamente. Estes protocolos permiten o desenvolvemento de novas solucións IOT asegurando ao mesmo tempo baixa latencia, baixo consumo de enerxía ea QoS requiridos. Para avaliar o rendemento do sistema, eles sensores Bluetooth Low Energy (ble) foron utilizados e Ethernet en base a diferentes escenarios. En concreto, a experiencia do usuario é empiricamente cuantificados (é dicir, o quao rápido o sistema exhibe os datos recollidos a un usuario). Os resultados mostran que a arquitectura VTED proposta é moi rápido, porque algúns sensores intelixentes (situadas en Europa) poden auto-rexistro e auto-configurado nunha nube remota (en América do Sur) en menos de 3s e dos datos de visualización sensores para usuarios remotos en menos de 2 s. Por último, as tendencias da tecnoloxía para o desenvolvemento de sensores intelixentes no campo de Internet das cousas reais, dependendo das tecnoloxías e protocolos de comunicación, hardware, dispositivos multi-protocolo, sistemas operativos, ambientes de desenvolvemento en liña mostra e linguaxes de programación do firmware dos devanditos nodos de sensores. Todas as contribucións científicas desta tese son reftectidas no deseño dun proxecto de agricultura de precisión, para controlar o risco dunha plantación de bananas automatizado. O devandito proxecto aínda está en execución, a pesar dos progresos da súa execución móstranse no último capítulo

    A practical evaluation on RSA and ECC-based cipher suites for IoT high-security energy-efficient Fog and mist computing devices

    Get PDF
    [Abstract] The latest Internet of Things (IoT) edge-centric architectures allow for unburdening higher layers from part of their computational and data processing requirements. In the specific case of fog computing systems, they reduce greatly the requirements of cloud-centric systems by processing in fog gateways part of the data generated by end devices, thus providing services that were previously offered by a remote cloud. Thanks to recent advances in System-on-Chip (SoC) energy efficiency, it is currently possible to create IoT end devices with enough computational power to process the data generated by their sensors and actuators while providing complex services, which in recent years derived into the development of the mist computing paradigm. To allow mist computing nodes to provide the previously mentioned benefits and guarantee the same level of security as in other architectures, end-to-end standard security mechanisms need to be implemented. In this paper, a high-security energy-efficient fog and mist computing architecture and a testbed are presented and evaluated. The testbed makes use of Transport Layer Security (TLS) 1.2 Elliptic Curve Cryptography (ECC) and Rivest-Shamir-Adleman (RSA) cipher suites (that comply with the yet to come TLS 1.3 standard requirements), which are evaluated and compared in terms of energy consumption and data throughput for a fog gateway and two mist end devices. The obtained results allow a conclusion that ECC outperforms RSA in both energy consumption and data throughput for all the tested security levels. Moreover, the importance of selecting a proper ECC curve is demonstrated, showing that, for the tested devices, some curves present worse energy consumption and data throughput than other curves that provide a higher security level. As a result, this article not only presents a novel mist computing testbed, but also provides guidelines for future researchers to find out efficient and secure implementations for advanced IoT devices.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED341D R2016/012Xunta de Galicia; ED431G/01Agencia Estatal de Investigación de España; TEC2013-47141-C4-1-RAgencia Estatal de Investigación de España; TEC2015-69648-REDCAgencia Estatal de Investigación de España; TEC2016-75067-C4-1-

    Design and experimental validation of a LoRaWAN fog computing based architecture for IoT enabled smart campus applications

    Get PDF
    A smart campus is an intelligent infrastructure where smart sensors and actuators collaborate to collect information and interact with the machines, tools, and users of a university campus. As in a smart city, a smart campus represents a challenging scenario for Internet of Things (IoT) networks, especially in terms of cost, coverage, availability, latency, power consumption, and scalability. The technologies employed so far to cope with such a scenario are not yet able to manage simultaneously all the previously mentioned demanding requirements. Nevertheless, recent paradigms such as fog computing, which extends cloud computing to the edge of a network, make possible low-latency and location-aware IoT applications. Moreover, technologies such as Low-Power Wide-Area Networks (LPWANs) have emerged as a promising solution to provide low-cost and low-power consumption connectivity to nodes spread throughout a wide area. Specifically, the Long-Range Wide-Area Network (LoRaWAN) standard is one of the most recent developments, receiving attention both from industry and academia. In this article, the use of a LoRaWAN fog computing-based architecture is proposed for providing connectivity to IoT nodes deployed in a campus of the University of A Coruña (UDC), Spain. To validate the proposed system, the smart campus has been recreated realistically through an in-house developed 3D Ray-Launching radio-planning simulator that is able to take into consideration even small details, such as traffic lights, vehicles, people, buildings, urban furniture, or vegetation. The developed tool can provide accurate radio propagation estimations within the smart campus scenario in terms of coverage, capacity, and energy efficiency of the network. The results obtained with the planning simulator can then be compared with empirical measurements to assess the operating conditions and the system accuracy. Specifically, this article presents experiments that show the accurate results obtained by the planning simulator in the largest scenario ever built for it (a campus that covers an area of 26,000 m2), which are corroborated with empirical measurements. Then, how the tool can be used to design the deployment of LoRaWAN infrastructure for three smart campus outdoor applications is explained: a mobility pattern detection system, a smart irrigation solution, and a smart traffic-monitoring deployment. Consequently, the presented results provide guidelines to smart campus designers and developers, and for easing LoRaWAN network deployment and research in other smart campuses and large environments such as smart cities.This work has been funded by the Xunta de Galicia (ED431C 2016-045, ED431G/01), the Agencia Estatal de Investigación of Spain (TEC2016-75067-C4-1-R) and ERDF funds of the EU (AEI/FEDER, UE)

    New Secure IoT Architectures, Communication Protocols and User Interaction Technologies for Home Automation, Industrial and Smart Environments

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e das Comunicacións en Redes Móbiles. 5029V01Tese por compendio de publicacións[Abstract] The Internet of Things (IoT) presents a communication network where heterogeneous physical devices such as vehicles, homes, urban infrastructures or industrial machinery are interconnected and share data. For these communications to be successful, it is necessary to integrate and embed electronic devices that allow for obtaining environmental information (sensors), for performing physical actuations (actuators) as well as for sending and receiving data (network interfaces). This integration of embedded systems poses several challenges. It is needed for these devices to present very low power consumption. In many cases IoT nodes are powered by batteries or constrained power supplies. Moreover, the great amount of devices needed in an IoT network makes power e ciency one of the major concerns of these deployments, due to the cost and environmental impact of the energy consumption. This need for low energy consumption is demanded by resource constrained devices, con icting with the second major concern of IoT: security and data privacy. There are critical urban and industrial systems, such as tra c management, water supply, maritime control, railway control or high risk industrial manufacturing systems such as oil re neries that will obtain great bene ts from IoT deployments, for which non-authorized access can posse severe risks for public safety. On the other hand, both these public systems and the ones deployed on private environments (homes, working places, malls) present a risk for the privacy and security of their users. These IoT deployments need advanced security mechanisms, both to prevent access to the devices and to protect the data exchanged by them. As a consequence, it is needed to improve two main aspects: energy e ciency of IoT devices and the use of lightweight security mechanisms that can be implemented by these resource constrained devices but at the same time guarantee a fair degree of security. The huge amount of data transmitted by this type of networks also presents another challenge. There are big data systems capable of processing large amounts of data, but with IoT the granularity and dispersion of the generated information presents a new scenario very di erent from the one existing nowadays. Forecasts anticipate that there will be a growth from the 15 billion installed devices in 2015 to more than 75 billion devices in 2025. Moreover, there will be much more services exploiting the data produced by these networks, meaning the resulting tra c will be even higher. The information must not only be processed in real time, but data mining processes will have to be performed to historical data. The main goal of this Ph.D. thesis is to analyze each one of the previously described challenges and to provide solutions that allow for an adequate adoption of IoT in Industrial, domestic and, in general, any scenario that can obtain any bene t from the interconnection and exibility that IoT brings.[Resumen] La internet de las cosas (IoT o Internet of Things) representa una red de intercomunicaciones en la que participan dispositivos físicos de toda índole, como vehículos, viviendas, electrodomésticos, infraestructuras urbanas o maquinaria y dispositivos industriales. Para que esta comunicación se pueda llevar a cabo es necesario integrar elementos electr onicos que permitan obtener informaci on del entorno (sensores), realizar acciones f sicas (actuadores) y enviar y recibir la informaci on necesaria (interfaces de comunicaciones de red). La integración y uso de estos sistemas electrónicos embebidos supone varios retos. Es necesario que dichos dispositivos presenten un consumo reducido. En muchos casos deberían ser alimentados por baterías o fuentes de alimentación limitadas. Además, la gran cantidad de dispositivos que involucra la IoT hace necesario que la e ciencia energética de los mismos sea una de las principales preocupaciones, por el coste e implicaciones medioambientales que supone el consumo de electricidad de los mismos. Esta necesidad de limitar el consumo provoca que dichos dispositivos tengan unas prestaciones muy limitadas, lo que entra en conflicto con la segunda mayor preocupación de la IoT: la seguridad y privacidad de los datos. Por un lado existen sistemas críticos urbanos e industriales, como puede ser la regulación del tráfi co, el control del suministro de agua, el control marítimo, el control ferroviario o los sistemas de producción industrial de alto riesgo, como refi nerías, que son claros candidatos a benefi ciarse de la IoT, pero cuyo acceso no autorizado supone graves problemas de seguridad ciudadana. Por otro lado, tanto estos sistemas de naturaleza publica, como los que se desplieguen en entornos privados (viviendas, entornos de trabajo o centros comerciales, entre otros) suponen un riesgo para la privacidad y también para la seguridad de los usuarios. Todo esto hace que sean necesarios mecanismos de seguridad avanzados, tanto de acceso a los dispositivos como de protección de los datos que estos intercambian. En consecuencia, es necesario avanzar en dos aspectos principales: la e ciencia energética de los dispositivos y el uso de mecanismos de seguridad e ficientes, tanto computacional como energéticamente, que permitan la implantación de la IoT sin comprometer la seguridad y la privacidad de los usuarios. Por otro lado, la ingente cantidad de información que estos sistemas puede llegar a producir presenta otros dos retos que deben ser afrontados. En primer lugar, el tratamiento y análisis de datos toma una nueva dimensión. Existen sistemas de big data capaces de procesar cantidades enormes de información, pero con la internet de las cosas la granularidad y dispersión de los datos plantean un escenario muy distinto al actual. La previsión es pasar de 15.000.000.000 de dispositivos instalados en 2015 a más de 75.000.000.000 en 2025. Además existirán multitud de servicios que harán un uso intensivo de estos dispositivos y de los datos que estos intercambian, por lo que el volumen de tráfico será todavía mayor. Asimismo, la información debe ser procesada tanto en tiempo real como a posteriori sobre históricos, lo que permite obtener información estadística muy relevante en diferentes entornos. El principal objetivo de la presente tesis doctoral es analizar cada uno de estos retos (e ciencia energética, seguridad, procesamiento de datos e interacción con el usuario) y plantear soluciones que permitan una correcta adopción de la internet de las cosas en ámbitos industriales, domésticos y en general en cualquier escenario que se pueda bene ciar de la interconexión y flexibilidad de acceso que proporciona el IoT.[Resumo] O internet das cousas (IoT ou Internet of Things) representa unha rede de intercomunicaci óns na que participan dispositivos físicos moi diversos, coma vehículos, vivendas, electrodomésticos, infraestruturas urbanas ou maquinaria e dispositivos industriais. Para que estas comunicacións se poidan levar a cabo é necesario integrar elementos electrónicos que permitan obter información da contorna (sensores), realizar accións físicas (actuadores) e enviar e recibir a información necesaria (interfaces de comunicacións de rede). A integración e uso destes sistemas electrónicos integrados supón varios retos. En primeiro lugar, é necesario que estes dispositivos teñan un consumo reducido. En moitos casos deberían ser alimentados por baterías ou fontes de alimentación limitadas. Ademais, a gran cantidade de dispositivos que se empregan na IoT fai necesario que a e ciencia enerxética dos mesmos sexa unha das principais preocupacións, polo custo e implicacións medioambientais que supón o consumo de electricidade dos mesmos. Esta necesidade de limitar o consumo provoca que estes dispositivos teñan unhas prestacións moi limitadas, o que entra en con ito coa segunda maior preocupación da IoT: a seguridade e privacidade dos datos. Por un lado existen sistemas críticos urbanos e industriais, como pode ser a regulación do tráfi co, o control de augas, o control marítimo, o control ferroviario ou os sistemas de produción industrial de alto risco, como refinerías, que son claros candidatos a obter benefi cios da IoT, pero cuxo acceso non autorizado supón graves problemas de seguridade cidadá. Por outra parte tanto estes sistemas de natureza pública como os que se despreguen en contornas privadas (vivendas, contornas de traballo ou centros comerciais entre outros) supoñen un risco para a privacidade e tamén para a seguridade dos usuarios. Todo isto fai que sexan necesarios mecanismos de seguridade avanzados, tanto de acceso aos dispositivos como de protección dos datos que estes intercambian. En consecuencia, é necesario avanzar en dous aspectos principais: a e ciencia enerxética dos dispositivos e o uso de mecanismos de seguridade re cientes, tanto computacional como enerxéticamente, que permitan o despregue da IoT sen comprometer a seguridade e a privacidade dos usuarios. Por outro lado, a inxente cantidade de información que estes sistemas poden chegar a xerar presenta outros retos que deben ser tratados. O tratamento e a análise de datos toma unha nova dimensión. Existen sistemas de big data capaces de procesar cantidades enormes de información, pero coa internet das cousas a granularidade e dispersión dos datos supón un escenario moi distinto ao actual. A previsión e pasar de 15.000.000.000 de dispositivos instalados no ano 2015 a m ais de 75.000.000.000 de dispositivos no ano 2025. Ademais existirían multitude de servizos que farían un uso intensivo destes dispositivos e dos datos que intercambian, polo que o volume de tráfico sería aínda maior. Do mesmo xeito a información debe ser procesada tanto en tempo real como posteriormente sobre históricos, o que permite obter información estatística moi relevante en diferentes contornas. O principal obxectivo da presente tese doutoral é analizar cada un destes retos (e ciencia enerxética, seguridade, procesamento de datos e interacción co usuario) e propor solucións que permitan unha correcta adopción da internet das cousas en ámbitos industriais, domésticos e en xeral en todo aquel escenario que se poda bene ciar da interconexión e flexibilidade de acceso que proporciona a IoT

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa
    corecore