442 research outputs found

    When Channel Bonding is Beneficial for Opportunistic Spectrum Access Networks

    Full text link
    Transmission over multiple frequency bands combined into one logical channel speeds up data transfer for wireless networks. On the other hand, the allocation of multiple channels to a single user decreases the probability of finding a free logical channel for new connections, which may result in a network-wide throughput loss. While this relationship has been studied experimentally, especially in the WLAN configuration, little is known on how to analytically model such phenomena. With the advent of Opportunistic Spectrum Access (OSA) networks, it is even more important to understand the circumstances in which it is beneficial to bond channels occupied by primary users with dynamic duty cycle patterns. In this paper we propose an analytical framework which allows the investigation of the average channel throughput at the medium access control layer for OSA networks with channel bonding enabled. We show that channel bonding is generally beneficial, though the extent of the benefits depend on the features of the OSA network, including OSA network size and the total number of channels available for bonding. In addition, we show that performance benefits can be realized by adaptively changing the number of bonded channels depending on network conditions. Finally, we evaluate channel bonding considering physical layer constraints, i.e. throughput reduction compared to the theoretical throughput of a single virtual channel due to a transmission power limit for any bonding size.Comment: accepted to IEEE Transactions on Wireless Communication

    An analysis on decentralized adaptive MAC protocols for Cognitive Radio networks

    Get PDF
    The scarcity of bandwidth in the radio spectrum has become more vital since the demand for more and more wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum and inefficiency in its utilization has been smartly addressed by the Cognitive Radio (CR) Technology which is an opportunistic network that senses the environment, observes the network changes, and then using knowledge gained from the prior interaction with the network, makes intelligent decisions by dynamically adapting their transmission characteristics. In this paper some of the decentralized adaptive MAC protocols for CR networks have been critically analyzed and a novel adaptive MAC protocol for CR networks, DNG-MAC which is decentralized and non-global in nature, has been proposed. The results show the DNG-MAC out performs other CR MAC protocols in terms of time and energy efficiency

    A novel multi-fold security framework for cognitive radio wireless ad-hoc networks

    Get PDF
    Cognitive Radio (CR) Technology has emerged as a smart and intelligent technology to address the problem of spectrum scarcity and its under-utilization. CR nodes sense the environment for vacant channels, exchange control information, and agree upon free channels list (FCL) to use for data transmission and conclusion. CR technology is heavily dependent on the control channel to dialogue on the exchanged control information which is usually in the Industrial-Scientific-Medical (ISM) band. As the ISM band is publically available this makes the CR network more prone to security vulnerabilities and flaws. In this paper a novel multi-fold security framework for cognitive radio wireless ad-hoc networks has been proposed. Multiple security levels, such as, encryption of beacon frame and privately exchanging the FCL, and the dynamic and adaptive behaviour of the framework makes the proposed protocol more resilient and secure against the traditional security attacks when compared with existing protocols

    Cognitive Media Access Control

    Get PDF

    Medium access control protocol design for wireless communications and networks review

    Get PDF
    Medium access control (MAC) protocol design plays a crucial role to increase the performance of wireless communications and networks. The channel access mechanism is provided by MAC layer to share the medium by multiple stations. Different types of wireless networks have different design requirements such as throughput, delay, power consumption, fairness, reliability, and network density, therefore, MAC protocol for these networks must satisfy their requirements. In this work, we proposed two multiplexing methods for modern wireless networks: Massive multiple-input-multiple-output (MIMO) and power domain non-orthogonal multiple access (PD-NOMA). The first research method namely Massive MIMO uses a massive number of antenna elements to improve both spectral efficiency and energy efficiency. On the other hand, the second research method (PD-NOMA) allows multiple non-orthogonal signals to share the same orthogonal resources by allocating different power level for each station. PD-NOMA has a better spectral efficiency over the orthogonal multiple access methods. A review of previous works regarding the MAC design for different wireless networks is classified based on different categories. The main contribution of this research work is to show the importance of the MAC design with added optimal functionalities to improve the spectral and energy efficiencies of the wireless networks

    Multi-channel Utilization Algorithms for IEEE 802.15.4 based Wireless Network: A Survey

    Get PDF
    In the pass years, IEEE 802.15.4 based Wireless Sensor Networks (WSNs) have received great attention and have been employed in many areas such as inventory checking, local monitoring and alarming etc. One of the key issues affecting WSN's system performance is interference caused by devices operating with the same or different standards on the overlapping frequency within the 2.4 GHz ISM band. This paper addresses the coexistence problem, which is the key motivation for the necessity of flexible channel usage. A review of existing approaches being proposed to date supporting multi-channel utilization in IEEE 802.15.4 based WSNs is categorized and discussed. The paper also presents major functionalities needed in implementing multi-channel utilization

    A survey on MAC protocols for complex self-organizing cognitive radio networks

    Get PDF
    Complex self-organizing cognitive radio (CR) networks serve as a framework for accessing the spectrum allocation dynamically where the vacant channels can be used by CR nodes opportunistically. CR devices must be capable of exploiting spectrum opportunities and exchanging control information over a control channel. Moreover, CR nodes should intelligently coordinate their access between different cognitive radios to avoid collisions on the available spectrum channels and to vacate the channel for the licensed user in timely manner. Since inception of CR technology, several MAC protocols have been designed and developed. This paper surveys the state of the art on tools, technologies and taxonomy of complex self-organizing CR networks. A detailed analysis on CR MAC protocols form part of this paper. We group existing approaches for development of CR MAC protocols and classify them into different categories and provide performance analysis and comparison of different protocols. With our categorization, an easy and concise view of underlying models for development of a CR MAC protocol is provided

    Multi-Channel Scheduling with Optimal Spectrum Channel Hole Filling (MCS-OSHF) for Cognitive Radio Wireless Networks

    Get PDF
    In this study, a contemporary method of scheduling algorithm has been proposed for working on scheduling of varying size data-frames transmission in CR based wireless networks. The objective of the proposed model is to achieve maximum throughput, and also reduction of loss of dataframes in the transmission. Some of the key elements that are considered in the development of the model are optimal bandwidth and idle channel availability. Using the three level hierarchical approach, the scheduling strategy is constructed. The optimal idle channel allocation, allocation with considerable transmission intervals allocation and optimal multiple channels models are considered at respective levels in the hierarchy in the proposed algorithm. The proposed model while tested under simulated environment in comparison to the other two bench marking models, the outcome depicts that the process is more efficient and supports in improving the overall process of scheduling of data-frames as per the desired objectives of the model

    Hybrid DES-based Vehicular Network Simulator with Multichannel Operations

    Get PDF
    Vehicular Ad-hoc Network (VANET) is considered to be a viable technology for inter- vehicle communications for the purpose of improving road safety and efficiency. The En- hanced Distribution Channel Access (EDCA) mechanism and multichannel operations are introduced to ensure the Quality of Service (QoS). Therefore, it is necessary to create an accurate vehicular network simulator that guarantees the vehicular communications will work as described in the protocols. A comprehensive vehicular network simulator should consider the interaction between mobility models and network protocols. In this dissertation, a novel vehicular network simulation environment, VANET Toolbox, designed using discrete-event system (DES) is presented. The APP layer DES Module of the proposed simulator integrates vehicular mo- bility operations with message generation functions. The MAC layer DES module supports single channel and multichannel EDCA operations. The PHY layer DES module supports bit-level processing. Compared with packet-based simulator such as NS-3, the proposed PHY layer is more realistic and accurate. The EDCA scheme is evaluated and compared with the traditional Carrier-Sensing Mul- tiple Access (CSMA) scheme, with the simulations proving that data with different priorities can coexist in the same channel. The multichannel operation for the EDCA scheme is also analyzed in this dissertation. The multichannel switching operation and coordination may cause packet dropping or increased latency to the communication. The simulations show that with heavy network traffic, multichannel communication performs better than single channel communication. From the perspective of safety-related messages, the multichannel operation is able to isolate the interference from the non-safety messages in order to achieve a better packet delivery rate and latency. On the other hand, the non-safety messages can achieve high throughput with reasonable latency from multichannel communication under heavy load traffic scenario
    • …
    corecore