166 research outputs found

    Popularity-Based Adaptive Content Delivery Scheme with In-Network Caching

    Get PDF
    To solve the increasing popularity of video streaming services over the Internet, recent research activities have addressed the locality of content delivery from a network edge by introducing a storage module into a router. To employ in-network caching and persistent request routing, this paper introduces a hybrid content delivery network (CDN) system combining novel content routers in an underlay together with a traditional CDN server in an overlay. This system first selects the most suitable delivery scheme (that is, multicast or broadcast) for the content in question and then allocates an appropriate number of channels based on a consideration of the content’s popularity. The proposed scheme aims to minimize traffic volume and achieve optimal delivery cost, since the most popular content is delivered through broadcast channels and the least popular through multicast channels. The performance of the adaptive scheme is clearly evaluated and compared against both the multicast and broadcast schemes in terms of the optimal in-network caching size and number of unicast channels in a content router to observe the significant impact of our proposed scheme

    A template-based sub-optimal content distribution for D2D content sharing networks

    Get PDF
    We propose Templatized Elastic Assignment (TEA), a light-weight scheme for mobile cooperative caching networks. It consists of two components, (1) one to calculate a sub-optimal distribution of each situation and (2) finegrained ID management by base stations (BSs) to achieve the calculated distribution. The former is modeled from findings that the desirable distribution plotted in a semilog graph forms a downward straight line with which the slope and Yintercept epend on the bias of request and total cache capacity, respectively. The latter is inspired from the identifier (ID)-based scheme, which ties devices and content by a randomly associated ID. TEA achieved the calculated distribution with IDs by using the annotation from base stations (BSs), which is preliminarily calculated by the template in a fine-grained density of devices. Moreover, such fine-grained management secondarily standardizes the cached content among multiple densities and enables the reuse of the content in devices from other BSs. Evaluation results indicate that our scheme reduces (1) 8.3 times more traffic than LFU and achieves almost the same amount of traffic reduction as with the genetic algorithm, (2) 45 hours of computation into a few seconds, and (3) at most 70% of content replacement across multiple BSs

    Proactive Mechanisms for Video-on-Demand Content Delivery

    Get PDF
    Video delivery over the Internet is the dominant source of network load all over the world. Especially VoD streaming services such as YouTube, Netflix, and Amazon Video have propelled the proliferation of VoD in many peoples' everyday life. VoD allows watching video from a large quantity of content at any time and on a multitude of devices, including smart TVs, laptops, and smartphones. Studies show that many people under the age of 32 grew up with VoD services and have never subscribed to a traditional cable TV service. This shift in video consumption behavior is continuing with an ever-growing number of users. satisfy this large demand, VoD service providers usually rely on CDN, which make VoD streaming scalable by operating a geographically distributed network of several hundreds of thousands of servers. Thereby, they deliver content from locations close to the users, which keeps traffic local and enables a fast playback start. CDN experience heavy utilization during the day and are usually reactive to the user demand, which is not optimal as it leads to expensive over-provisioning, to cope with traffic peaks, and overreacting content eviction that decreases the CDN's performance. However, to sustain future VoD streaming projections with hundreds of millions of users, new approaches are required to increase the content delivery efficiency. To this end, this thesis identifies three key research areas that have the potential to address the future demand for VoD content. Our first contribution is the design of vFetch, a privacy-preserving prefetching mechanism for mobile devices. It focuses explicitly on OTT VoD providers such as YouTube. vFetch learns the user interest towards different content channels and uses these insights to prefetch content on a user terminal. To do so, it continually monitors the user behavior and the device's mobile connectivity pattern, to allow for resource-efficient download scheduling. Thereby, vFetch illustrates how personalized prefetching can reduce the mobile data volume and alleviate mobile networks by offloading peak-hour traffic. Our second contribution focuses on proactive in-network caching. To this end, we present the design of the ProCache mechanism that divides the available cache storage concerning separate content categories. Thus, the available storage is allocated to these divisions based on their contribution to the overall cache efficiency. We propose a general work-flow that emphasizes multiple categories of a mixed content workload in addition to a work-flow tailored for music video content, the dominant traffic source on YouTube. Thereby, ProCache shows how content-awareness can contribute to efficient in-network caching. Our third contribution targets the application of multicast for VoD scenarios. Many users request popular VoD content with only small differences in their playback start time which offers a potential for multicast. Therefore, we present the design of the VoDCast mechanism that leverages this potential to multicast parts of popular VoD content. Thereby, VoDCast illustrates how ISP can collaborate with CDN to coordinate on content that should be delivered by ISP-internal multicast

    Mobile Content Delivery Network Design and Implementation

    Get PDF
    In this thesis, a novel concept of Mobile Content Delivery Network is designed and implemented in a real testbed with the target of flexibly adapting the video caching in the cellular network to the users dynamics. New challenges are discussed and practical considerations for wide-scale deployment in next generation cellular networks are drawn

    Evaluation of background push content download services to mobile devices over DVB networks

    Full text link
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper proposes a multicast content download service based on the use of residual network capacity to push multimedia content to available local storage in personal multimedia devices. The service under study is based on the FLUTE protocol. Specifically, FLUTE packets fill the spare capacity in the IP tunnels reserved for the primary streaming service (opportunistic insertion). The paper also evaluates the use of AL-FEC parity to overcome transmission errors,object multiplexing to send the most popular multimedia contents more frequently and cache management policies that consider user preferences in order to keep in storage the most useful items. The service has been evaluated through simulations and measurements performed with an application prototype based on the DVB-H standards. The results show that AL-FEC enables the use of residual capacity for background content download services. In turn, AL-FEC, as well as object multiplexing, improves the relation between the number of content items and the overall access time. Moreover, results show that high percentages of requests can be served from the local cache of the service, provided that it is possible to estimate the popularity of content items and the user preferences.This work was supported by the PAID-05-12 program of the UniversitatPolitecnica de Valencia.Fraile Gil, F.; De Fez Lava, I.; Guerri Cebollada, JC. (2014). Evaluation of background push content download services to mobile devices over DVB networks. IEEE Transactions on Broadcasting. 60(1):1-15. https://doi.org/10.1109/TBC.2013.2289639S11560

    A Survey on Adaptive Multimedia Streaming

    Get PDF
    Internet was primarily designed for one to one applications like electronic mail, reliable file transfer etc. However, the technological growth in both hardware and software industry have written in unprecedented success story of the growth of Internet and have paved the paths of modern digital evolution. In today’s world, the internet has become the way of life and has penetrated in its every domain. It is nearly impossible to list the applications which make use of internet in this era however, all these applications are data intensive and data may be textual, audio or visual requiring improved techniques to deal with these. Multimedia applications are one of them and have witnessed unprecedented growth in last few years. A predominance of that is by virtue of different video streaming applications in daily life like games, education, entertainment, security etc. Due to the huge demand of multimedia applications, heterogeneity of demands and limited resource availability there is a dire need of adaptive multimedia streaming. This chapter provides the detail discussion over different adaptive multimedia streaming mechanism over peer to peer network

    Scalable Streaming Multimedia Delivery using Peer-to-Peer Communication

    Get PDF
    corecore