2,470 research outputs found

    Studies on Core-Based Testing of System-on-Chips Using Functional Bus and Network-on-Chip Interconnects

    Get PDF
    The tests of a complex system such as a microprocessor-based system-onchip (SoC) or a network-on-chip (NoC) are difficult and expensive. In this thesis, we propose three core-based test methods that reuse the existing functional interconnects-a flat bus, hierarchical buses of multiprocessor SoC's (MPSoC), and a N oC-in order to avoid the silicon area cost of a dedicated test access mechanism (TAM). However, the use of functional interconnects as functional TAM's introduces several new problems. During tests, the interconnects-including the bus arbitrator, the bus bridges, and the NoC routers-operate in the functional mode to transport the test stimuli and responses, while the core under tests (CUT) operate in the test mode. Second, the test data is transported to the CUT through the functional bus, and not directly to the test port. Therefore, special core test wrappers that can provide the necessary control signals required by the different functional interconnect are proposed. We developed two types of wrappers, one buffer-based wrapper for the bus-based systems and another pair of complementary wrappers for the NoCbased systems. Using the core test wrappers, we propose test scheduling schemes for the three functionally different types of interconnects. The test scheduling scheme for a flat bus is developed based on an efficient packet scheduling scheme that minimizes both the buffer sizes and the test time under a power constraint. The schedulingscheme is then extended to take advantage of the hierarchical bus architecture of the MPSoC systems. The third test scheduling scheme based on the bandwidth sharing is developed specifically for the NoC-based systems. The test scheduling is performed under the objective of co-optimizing the wrapper area cost and the resulting test application time using the two complementary NoC wrappers. For each of the proposed methodology for the three types of SoC architec .. ture, we conducted a thorough experimental evaluation in order to verify their effectiveness compared to other methods

    Modeling cost saving and innovativeness for blockchain technology adoption by energy management

    Get PDF
    In developed nations, the advent of distributed ledger technology is emerging as a new instrument for improving the traditional system in developing nations. Indeed, adopting blockchain technology is a necessary condition for the coming future of organizations. The distributed ledger technology provides better transparency and visibility. This study investigated the features that may influence the behavioral intention of energy experts to implement the distributed ledger technology for the energy management of developing countries. The proposed model is based on the Technology Acceptance Model construct and the diffusion of the innovation construct. Based on a survey of 178 experts working in the energy sector, the proposed model was tested using structural equation modeling. The findings showed that perceived ease of use, perceived usefulness, attitude, and cost saving had a positive and significant impact during the blockchain technology adoption. However, innovativeness showed a positive effect on the perceived ease of use whereas an insignificant impact on the perceived usefulness. The present study offers a holistic model for the implementation of innovative technologies. For the developers, it suggest rising disruptive technology solutions

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    A Systematic Literature Review of the Adoption of Building Information Modelling (BIM) on Life Cycle Cost (LCC)

    Get PDF
    The need for embedding sustainability in construction development contributed to the introduction of Building information Modelling (BIM) to be adopted into the Life Cycle Cost (LCC) process. Through BIM, project information used during design can be shared to estimate the project’s end of life costs. LCC enables to assess the overall cost of an asset (building) through its life cycle via functionalities including the original investment costs, maintenance expenses, operating expenses, and the remaining value of the asset at the end of its life. The objective of this paper is to discuss the merging of BIM into LCC through four prevalent aspects; methodology, design software used, benefits, and challenges. A total of 20 studies were reviewed upon filtering process using PRISMA method. These studies discussed at least one of the aspects mentioned and contributed to the information regarding BIM and LCC. This paper thus aims to expanding studies on BIM adoption on LCC through the collected information sourced from peer-reviewed publications

    Classical Disordered Ground States: Super-Ideal Gases, and Stealth and Equi-Luminous Materials

    Full text link
    Using a collective coordinate numerical optimization procedure, we construct ground-state configurations of interacting particle systems in various space dimensions so that the scattering of radiation exactly matches a prescribed pattern for a set of wave vectors. We show that the constructed ground states are, counterintuitively, disordered (i.e., possess no long-range order) in the infinite-volume limit. We focus on three classes of configurations with unique radiation scattering characteristics: (i)``stealth'' materials, which are transparent to incident radiation at certain wavelengths; (ii)``super-ideal'' gases, which scatter radiation identically to that of an ensemble of ideal gas configurations for a selected set of wave vectors; and (iii)``equi-luminous'' materials, which scatter radiation equally intensely for a selected set of wave vectors. We find that ground-state configurations have an increased tendency to contain clusters of particles as one increases the prescribed luminosity. Limitations and consequences of this procedure are detailed.Comment: 44 pages, 16 figures, revtek

    Infrastructures and Algorithms for Testable and Dependable Systems-on-a-Chip

    Get PDF
    Every new node of semiconductor technologies provides further miniaturization and higher performances, increasing the number of advanced functions that electronic products can offer. Silicon area is now so cheap that industries can integrate in a single chip usually referred to as System-on-Chip (SoC), all the components and functions that historically were placed on a hardware board. Although adding such advanced functionality can benefit users, the manufacturing process is becoming finer and denser, making chips more susceptible to defects. Today’s very deep-submicron semiconductor technologies (0.13 micron and below) have reached susceptibility levels that put conventional semiconductor manufacturing at an impasse. Being able to rapidly develop, manufacture, test, diagnose and verify such complex new chips and products is crucial for the continued success of our economy at-large. This trend is expected to continue at least for the next ten years making possible the design and production of 100 million transistor chips. To speed up the research, the National Technology Roadmap for Semiconductors identified in 1997 a number of major hurdles to be overcome. Some of these hurdles are related to test and dependability. Test is one of the most critical tasks in the semiconductor production process where Integrated Circuits (ICs) are tested several times starting from the wafer probing to the end of production test. Test is not only necessary to assure fault free devices but it also plays a key role in analyzing defects in the manufacturing process. This last point has high relevance since increasing time-to-market pressure on semiconductor fabrication often forces foundries to start volume production on a given semiconductor technology node before reaching the defect densities, and hence yield levels, traditionally obtained at that stage. The feedback derived from test is the only way to analyze and isolate many of the defects in today’s processes and to increase process’s yield. With the increasing need of high quality electronic products, at each new physical assembly level, such as board and system assembly, test is used for debugging, diagnosing and repairing the sub-assemblies in their new environment. Similarly, the increasing reliability, availability and serviceability requirements, lead the users of high-end products performing periodic tests in the field throughout the full life cycle. To allow advancements in each one of the above scaling trends, fundamental changes are expected to emerge in different Integrated Circuits (ICs) realization disciplines such as IC design, packaging and silicon process. These changes have a direct impact on test methods, tools and equipment. Conventional test equipment and methodologies will be inadequate to assure high quality levels. On chip specialized block dedicated to test, usually referred to as Infrastructure IP (Intellectual Property), need to be developed and included in the new complex designs to assure that new chips will be adequately tested, diagnosed, measured, debugged and even sometimes repaired. In this thesis, some of the scaling trends in designing new complex SoCs will be analyzed one at a time, observing their implications on test and identifying the key hurdles/challenges to be addressed. The goal of the remaining of the thesis is the presentation of possible solutions. It is not sufficient to address just one of the challenges; all must be met at the same time to fulfill the market requirements

    電子政府サービスの品質評価 : ベトナムの事例

    Get PDF
    早大学位記番号:新7118早稲田大

    Stick or Twist – The raise of blockchain applications in marketing management

    Get PDF
    The adoption of blockchain technology by companies can change the way they interact with stakeholders, redefining communication strategies and other marketing processes. In this study, we investigated the relevance of blockchain applications for marketing management from the perspective of marketing-related professionals. Answers about blockchain technology application in the marketing arena were collected from the social platform Quora. The data were analyzed through text mining and Spearman’s correlation coefficient to assess the degree of association, inherent intensity, and the association significance between the variables payments, supply chain, loyalty programs, digital marketing, credential management, and marketing management, using Quora-specific metrics, namely, upvotes, shares, and views. The results posit blockchain technology as being an asset for marketing, with greater relevance in supply chain and internal management among marketing operations. Professionals will be able to potentially improve internal management systems and marketing campaigns, which will enhance companies’ competitive advantage.info:eu-repo/semantics/publishedVersio
    corecore