3,585 research outputs found

    Explicit Topology Optimization of Conforming Voronoi Foams

    Full text link
    Topology optimization is able to maximally leverage the high DOFs and mechanical potentiality of porous foams but faces three fundamental challenges: conforming to free-form outer shapes, maintaining geometric connectivity between adjacent cells, and achieving high simulation accuracy. To resolve the issues, borrowing the concept from Voronoi tessellation, we propose to use the site (or seed) positions and radii of the beams as the DOFs for open-cell foam design. Such DOFs cover extensive design space and have clear geometrical meaning, which makes it easy to provide explicit controls (e.g. granularity). During the gradient-based optimization, the foam topology can change freely, and some seeds may even be pushed out of the shape, which greatly alleviates the challenges of prescribing a fixed underlying grid. The mechanical property of our foam is computed from its highly heterogeneous density field counterpart discretized on a background mesh, with a much improved accuracy via a new material-aware numerical coarsening method. We also explore the differentiability of the open-cell Voronoi foams w.r.t. its seed locations, and propose a local finite difference method to estimate the derivatives efficiently. We do not only show the improved foam performance of our Voronoi foam in comparison with classical topology optimization approaches, but also demonstrate its advantages in various settings, especially when the target volume fraction is extremely low

    A jigsaw puzzle framework for homogenization of high porosity foams

    Get PDF
    An approach to homogenization of high porosity metallic foams is explored. The emphasis is on the \Alporas{} foam and its representation by means of two-dimensional wire-frame models. The guaranteed upper and lower bounds on the effective properties are derived by the first-order homogenization with the uniform and minimal kinematic boundary conditions at heart. This is combined with the method of Wang tilings to generate sufficiently large material samples along with their finite element discretization. The obtained results are compared to experimental and numerical data available in literature and the suitability of the two-dimensional setting itself is discussed.Comment: 11 pages, 7 figures, 3 table

    VoroCrust: Voronoi Meshing Without Clipping

    Full text link
    Polyhedral meshes are increasingly becoming an attractive option with particular advantages over traditional meshes for certain applications. What has been missing is a robust polyhedral meshing algorithm that can handle broad classes of domains exhibiting arbitrarily curved boundaries and sharp features. In addition, the power of primal-dual mesh pairs, exemplified by Voronoi-Delaunay meshes, has been recognized as an important ingredient in numerous formulations. The VoroCrust algorithm is the first provably-correct algorithm for conforming polyhedral Voronoi meshing for non-convex and non-manifold domains with guarantees on the quality of both surface and volume elements. A robust refinement process estimates a suitable sizing field that enables the careful placement of Voronoi seeds across the surface circumventing the need for clipping and avoiding its many drawbacks. The algorithm has the flexibility of filling the interior by either structured or random samples, while preserving all sharp features in the output mesh. We demonstrate the capabilities of the algorithm on a variety of models and compare against state-of-the-art polyhedral meshing methods based on clipped Voronoi cells establishing the clear advantage of VoroCrust output.Comment: 18 pages (including appendix), 18 figures. Version without compressed images available on https://www.dropbox.com/s/qc6sot1gaujundy/VoroCrust.pdf. Supplemental materials available on https://www.dropbox.com/s/6p72h1e2ivw6kj3/VoroCrust_supplemental_materials.pd

    Conformal Magnetic Composite RFID for Wearable RF and Bio-Monitoring Applications

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.10.1109/TMTT.2008.2006810This paper introduces for the first time a novel flexible magnetic composite material for RF identification (RFID) and wearable RF antennas. First, one conformal RFID tag working at 480 MHz is designed and fabricated as a benchmarking prototype and the miniaturization concept is verified. Then, the impact of the material is thoroughly investigated using a hybrid method involving electromagnetic and statistical tools. Two separate statistical experiments are performed, one for the analysis of the impact of the relative permittivity and permeability of the proposed material and the other for the evaluation of the impact of the dielectric and magnetic loss on the antenna performance. Finally, the effect of the bending of the antenna is investigated, both on the S-parameters and on the radiation pattern. The successful implementation of the flexible magnetic composite material enables the significant miniaturization of RF passives and antennas in UHF frequency bands, especially when conformal modules that can be easily fine-tuned are required in critical biomedical and pharmaceutical applications

    Design of the flutter suppression system for DAST ARW-IR

    Get PDF
    The design of the flutter suppression system for a remotely-piloted research vehicle is described. The modeling of the aeroelastic system, the methodology used to synthesized the control law, the analytical results used to evaluate the control law performance, and ground testing of the flutter suppression system onboard the aircraft are discussed. The major emphasis is on the use of optimal control techniques employed during the synthesis of the control law
    • …
    corecore