4 research outputs found

    Comparative Study of Winding Configurations of a Five-Phase Flux-Switching PM Machine

    Get PDF
    This paper introduces a general method for determination of the most suitable winding configurations for five-phase flux-switching permanent magnet (FSPM) machines, associated with feasible stator/rotor-pole combinations. Consequently, the effect of winding configurations on the performance of a five-phase outer-rotor FSPM machine is thoroughly investigated, including non-overlapping concentrated windings (single-layer, double-layer, and multi-layer) as well as distributed winding. The electromagnetic characteristics in the low-speed region, the flux-weakening capability in the high-speed region, and the fault-tolerant capability under faulty situations are evaluated and compared in detail. This work shows that compared with the conventional single-layer or double-layer concentrated windings, the FSPM machine with multi-layer type winding exhibits lower torque ripple and losses. Meanwhile, the motor with distributed windings possesses higher torque density and larger inductance. Finally, a prototype is manufactured, and the analysis results are validated by experiments

    Overview of Sensitivity Analysis Methods Capabilities for Traction AC Machines in Electrified Vehicles

    Get PDF
    © 2021 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.A robust design in electrified powertrains substantially helps to enhance the vehicle's overall efficiency. Robustness analyses come with complexity and computational costs at the vehicle level. The use of sensitivity analysis (SA) methods in the design phase has gained popularity in recent years to improve the performance of road vehicles while optimizing the resources, reducing the costs, and shortening the development time. Designers have started to utilize the SA methods to explore: i) how the component and vehicle level design options affect the main outputs i.e. energy efficiency and energy consumption; ii) observing sub-dependent parameters, which might be influenced by the variation of the targeted controllable (i.e. magnet thickness) and uncontrollable (i.e. magnet temperature) variables, in nonlinear dynamic systems; and iii) evaluating the interactions, of both dependent, and sub-dependent controllable/uncontrollable variables, under transient conditions. Hence the aim of this study is to succinctly review recent utilization of SA methods in the design of AC electric machines (EM)s used in vehicle powertrains, to evaluate and discuss the findings presented in recent research papers while summarizing the current state of knowledge. By systematically reviewing the literature on applied SAs in electrified powertrains, we offer a bibliometric analysis of the trends of application-oriented SA studies in the last and next decades. Finally, a numerical-based case study on a third-generation TOYOTA Prius EM will be given, to verify the SA-related findings of this article, alongside future works recommendations.Peer reviewe

    Comparative study on two modular spoke-type PM machines for in-wheel traction applications

    Get PDF
    This paper focuses on the comparative analysis of modular spoke-type permanent magnet machines with two magnetization modes, which are referred to as M-I and M-II types. The analytical models of the proposed machines are built based on the simple magneto-motive-force-permeance method. With the help of finite element analysis and the analytical models, magnetic fields in machines with different magnetization modes are compared. Then, taking as a base an existing commercial in-wheel machine used in an electric motorcycle, two proposed machines with different magnetization modes are designed as in-wheel traction machines and compared with respect to electromagnetic torque, flux-weakening performance, over-load capability, etc. The machines are prototyped and experimentally tested to verify the prediction that the M-II machines exhibit a higher torque output while the M-I machines have a wider speed range

    Design and Application of Electrical Machines

    Get PDF
    Electrical machines are one of the most important components of the industrial world. They are at the heart of the new industrial revolution, brought forth by the development of electromobility and renewable energy systems. Electric motors must meet the most stringent requirements of reliability, availability, and high efficiency in order, among other things, to match the useful lifetime of power electronics in complex system applications and compete in the market under ever-increasing pressure to deliver the highest performance criteria. Today, thanks to the application of highly efficient numerical algorithms running on high-performance computers, it is possible to design electric machines and very complex drive systems faster and at a lower cost. At the same time, progress in the field of material science and technology enables the development of increasingly complex motor designs and topologies. The purpose of this Special Issue is to contribute to this development of electric machines. The publication of this collection of scientific articles, dedicated to the topic of electric machine design and application, contributes to the dissemination of the above information among professionals dealing with electrical machines
    corecore