148 research outputs found

    Design and Fabrication of Soft 3D Printed Actuators: Expanding Soft Robotics Applications

    Get PDF
    Soft pneumatic actuators are ideal for soft robotic applications due to their innate compliance and high power-weight ratios. Presently, the majority of soft pneumatic actuators are used to create bending motions, with very few able to produce significant linear movements. Fewer can actively produce strains in multiple directions. The further development of these actuators is limited by their fabrication methods, specifically the lack of suitable stretchable materials for 3D printing. In this thesis, a new highly elastic resin for digital light projection 3D printers, designated ElastAMBER, is developed and evaluated, which shows improvements over previously synthesised elastic resins. It is prepared from a di-functional polyether urethane acrylate oligomer and a blend of two different diluent monomers. ElastAMBER exhibits a viscosity of 1000 mPa.s at 40 °C, allowing easy printing at near room temperatures. The 3D-printed components present an elastomeric behaviour with a maximum extension ratio of 4.02 ± 0.06, an ultimate tensile strength of (1.23 ± 0.09) MPa, low hysteresis, and negligible viscoelastic relaxation

    Origami-inspired soft twisting actuator

    Full text link
    Soft actuators have shown great advantages in compliance and morphology matched for manipulation of delicate objects and inspection in a confined space. There is an unmet need for a soft actuator that can provide torsional motion to e.g. enlarge working space and increase degrees of freedom. Towards this goal, we present origami-inspired soft pneumatic actuators (OSPAs) made from silicone. The prototype can output a rotation of more than one revolution (up to 435{\deg}), more significant than its counterparts. Its rotation ratio (=rotation angle/ aspect ratio) is more than 136{\deg}, about twice the largest one in other literature. We describe the design and fabrication method, build the analytical model and simulation model, and analyze and optimize the parameters. Finally, we demonstrate the potentially extensive utility of the OSPAs through their integration into a gripper capable of simultaneously grasping and lifting fragile or flat objects, a versatile robot arm capable of picking and placing items at the right angle with the twisting actuators, and a soft snake robot capable of changing attitude and directions by torsion of the twisting actuators.Comment: 9 figures. Soft Robotics (2022

    Continuum Mechanical Models for Design and Characterization of Soft Robots

    Full text link
    The emergence of ``soft'' robots, whose bodies are made from stretchable materials, has fundamentally changed the way we design and construct robotic systems. Demonstrations and research show that soft robotic systems can be useful in rehabilitation, medical devices, agriculture, manufacturing and home assistance. Increasing need for collaborative, safe robotic devices have combined with technological advances to create a compelling development landscape for soft robots. However, soft robots are not yet present in medical and rehabilitative devices, agriculture, our homes, and many other human-collaborative and human-interactive applications. This gap between promise and practical implementation exists because foundational theories and techniques that exist in rigid robotics have not yet been developed for soft robots. Theories in traditional robotics rely on rigid body displacements via discrete joints and discrete actuators, while in soft robots, kinematic and actuation functions are blended, leading to nonlinear, continuous deformations rather than rigid body motion. This dissertation addresses the need for foundational techniques using continuum mechanics. Three core questions regarding the use of continuum mechanical models in soft robotics are explored: (1) whether or not continuum mechanical models can describe existing soft actuators, (2) which physical phenomena need to be incorporated into continuum mechanical models for their use in a soft robotics context, and (3) how understanding on continuum mechanical phenomena may form bases for novel soft robot architectures. Theoretical modeling, experimentation, and design prototyping tools are used to explore Fiber-Reinforced Elastomeric Enclosures (FREEs), an often-used soft actuator, and to develop novel soft robot architectures based on auxetic behavior. This dissertation develops a continuum mechanical model for end loading on FREEs. This model connects a FREE’s actuation pressure and kinematic configuration to its end loads by considering stiffness of its elastomer and fiber reinforcement. The model is validated against a large experimental data set and compared to other FREE models used by roboticists. It is shown that the model can describe the FREE’s loading in a generalizable manner, but that it is bounded in its peak performance. Such a model can provide the novel function of evaluating the performance of FREE designs under high loading without the costs of building and testing prototypes. This dissertation further explores the influence viscoelasticity, an inherent property of soft polymers, on end loading of FREEs. The viscoelastic model developed can inform soft roboticists wishing to exploit or avoid hysteresis and force reversal. The final section of the dissertations explores two contrasting styles of auxetic metamaterials for their uses in soft robotic actuation. The first metamaterial architecture is composed of beams with distributed compliance, which are placed antagonistic configurations on a variety of surfaces, giving ride to shape morphing behavior. The second metamaterial architecture studied is a ``kirigami’’ sheet with an orthogonal cut pattern, utilizing lumped compliance and strain hardening to permanently deploy from a compact shape to a functional one. This dissertation lays the foundation for design of soft robots by robust physical models, reducing the need for physical prototypes and trial-and-error approaches. The work presented provides tools for systematic exploration of FREEs under loading in a wide range of configurations. The work further develops new concepts for soft actuators based on continuum mechanical modeling of auxetic metamaterials. The work presented expands the available tools for design and development of soft robotic systems, and the available architectures for soft robot actuation.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163236/1/asedal_1.pd

    Developing Design and Analysis Framework for Hybrid Mechanical-Digital Control of Soft Robots: from Mechanics-Based Motion Sequencing to Physical Reservoir Computing

    Get PDF
    The recent advances in the field of soft robotics have made autonomous soft robots working in unstructured dynamic environments a close reality. These soft robots can potentially collaborate with humans without causing any harm, they can handle fragile objects safely, perform delicate surgeries inside body, etc. In our research we focus on origami based compliant mechanisms, that can be used as soft robotic skeleton. Origami mechanisms are inherently compliant, lightweight, compact, and possess unique mechanical properties such as– multi-stability, nonlinear dynamics, etc. Researchers have shown that multi-stable mechanisms have applications in motion-sequencing applications. Additionally, the nonlinear dynamic properties of origami and other soft, compliant mechanisms are shown to be useful for ‘morphological computation’ in which the body of the robot itself takes part in performing complex computations required for its control. In our research we demonstrate the motion-sequencing capability of multi-stable mechanisms through the example of bistable Kresling origami robot that is capable of peristaltic locomotion. Through careful theoretical analysis and thorough experiments, we show that we can harness multistability embedded in the origami robotic skeleton for generating actuation cycle of a peristaltic-like locomotion gait. The salient feature of this compliant robot is that we need only a single linear actuator to control the total length of the robot, and the snap-through actions generated during this motion autonomously change the individual segment lengths that lead to earthworm-like peristaltic locomotion gait. In effect, the motion-sequencing is hard-coded or embedded in the origami robot skeleton. This approach is expected to reduce the control requirement drastically as the robotic skeleton itself takes part in performing low-level control tasks. The soft robots that work in dynamic environments should be able to sense their surrounding and adapt their behavior autonomously to perform given tasks successfully. Thus, hard-coding a certain behavior as in motion-sequencing is not a viable option anymore. This led us to explore Physical Reservoir Computing (PRC), a computational framework that uses a physical body with nonlinear properties as a ‘dynamic reservoir’ for performing complex computations. The compliant robot ‘trained’ using this framework should be able to sense its surroundings and respond to them autonomously via an extensive network of sensor-actuator network embedded in robotic skeleton. We show for the first time through extensive numerical analysis that origami mechanisms can work as physical reservoirs. We also successfully demonstrate the emulation task using a Miura-ori based reservoir. The results of this work will pave the way for intelligently designed origami-based robots with embodied intelligence. These next generation of soft robots will be able to coordinate and modulate their activities autonomously such as switching locomotion gait and resisting external disturbances while navigating through unstructured environments

    Design, Actuation, and Functionalization of Untethered Soft Magnetic Robots with Life-Like Motions: A Review

    Full text link
    Soft robots have demonstrated superior flexibility and functionality than conventional rigid robots. These versatile devices can respond to a wide range of external stimuli (including light, magnetic field, heat, electric field, etc.), and can perform sophisticated tasks. Notably, soft magnetic robots exhibit unparalleled advantages among numerous soft robots (such as untethered control, rapid response, and high safety), and have made remarkable progress in small-scale manipulation tasks and biomedical applications. Despite the promising potential, soft magnetic robots are still in their infancy and require significant advancements in terms of fabrication, design principles, and functional development to be viable for real-world applications. Recent progress shows that bionics can serve as an effective tool for developing soft robots. In light of this, the review is presented with two main goals: (i) exploring how innovative bioinspired strategies can revolutionize the design and actuation of soft magnetic robots to realize various life-like motions; (ii) examining how these bionic systems could benefit practical applications in small-scale solid/liquid manipulation and therapeutic/diagnostic-related biomedical fields

    A Novel Torsional Actuator Augmenting Twisting Skeleton and Artificial Muscle for Robots in Extreme Environments

    Get PDF

    Design, fabrication and control of soft robots

    Get PDF
    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.National Science Foundation (U.S.) (Grant IIS-1226883

    Elastic Inflatable Actuators for Soft Robotic Applications

    Get PDF
    The 20th century’s robotic systems have been made out of stiff materials and much of the developments in the field have pursued ever more accurate and dynamic robots which thrive in industrial automation settings and will probably continue to do so for many decades to come. However, the 21st century’s robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfil the role of robotic link and robotic actuator, where prime focus is on design and fabrication of the robotic hardware instead of software control to achieve a desired operation. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators to generate movement. This paper reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained substantial traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies including soft-lithography and additive manufacturing, and on the other hand by a market pull from the applications listed above. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication and applications.This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA)
    • …
    corecore