271 research outputs found

    Underactuated Rehabilitation Robotics for Hand Function

    Get PDF
    Normal hand function plays an important role in daily life. At present, the incidence of hand dysfunction caused by diseases such as cerebral palsy or stroke is increasing year by year. For the rehabilitation of hand dysfunction, in addition to surgical treatment, effective rehabilitation exercise is also particularly important. It is also a necessary link in the efficient and intelligent development of rehabilitation medicine to develop robots that can effectively help patients with rehabilitation hand functions.In this paper, based on the analysis of the design principles and objectives of the rehabilitation robot with hand function, the kinematics model of the rehabilitation robot with hand function is constructed,based on top-down principle in the design of the machine, the design of the machine hand function rehabilitation robots design optimization process framework, and based on the kinematics model and the virtual prototype technology, build its skeleton model, and carries on the kinematics simulation analysis, the design is verified the correctness of the hand function rehabilitation robot kinematics model

    Scalable Tactile Sensing for an Omni-adaptive Soft Robot Finger

    Full text link
    Robotic fingers made of soft material and compliant structures usually lead to superior adaptation when interacting with the unstructured physical environment. In this paper, we present an embedded sensing solution using optical fibers for an omni-adaptive soft robotic finger with exceptional adaptation in all directions. In particular, we managed to insert a pair of optical fibers inside the finger's structural cavity without interfering with its adaptive performance. The resultant integration is scalable as a versatile, low-cost, and moisture-proof solution for physically safe human-robot interaction. In addition, we experimented with our finger design for an object sorting task and identified sectional diameters of 94\% objects within the ±\pm6mm error and measured 80\% of the structural strains within ±\pm0.1mm/mm error. The proposed sensor design opens many doors in future applications of soft robotics for scalable and adaptive physical interactions in the unstructured environment.Comment: 8 pages, 6 figures, full-length version of a submission to IEEE RoboSoft 202

    Proprioceptive Learning with Soft Polyhedral Networks

    Full text link
    Proprioception is the "sixth sense" that detects limb postures with motor neurons. It requires a natural integration between the musculoskeletal systems and sensory receptors, which is challenging among modern robots that aim for lightweight, adaptive, and sensitive designs at a low cost. Here, we present the Soft Polyhedral Network with an embedded vision for physical interactions, capable of adaptive kinesthesia and viscoelastic proprioception by learning kinetic features. This design enables passive adaptations to omni-directional interactions, visually captured by a miniature high-speed motion tracking system embedded inside for proprioceptive learning. The results show that the soft network can infer real-time 6D forces and torques with accuracies of 0.25/0.24/0.35 N and 0.025/0.034/0.006 Nm in dynamic interactions. We also incorporate viscoelasticity in proprioception during static adaptation by adding a creep and relaxation modifier to refine the predicted results. The proposed soft network combines simplicity in design, omni-adaptation, and proprioceptive sensing with high accuracy, making it a versatile solution for robotics at a low cost with more than 1 million use cycles for tasks such as sensitive and competitive grasping, and touch-based geometry reconstruction. This study offers new insights into vision-based proprioception for soft robots in adaptive grasping, soft manipulation, and human-robot interaction.Comment: 20 pages, 10 figures, 2 tables, submitted to the International Journal of Robotics Research for revie

    Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery

    Get PDF
    Background: For some surgical interventions, like the Total Mesorectal Excision (TME), traditional laparoscopes lack the flexibility to safely maneuver and reach difficult surgical targets. This paper answers this need through designing, fabricating and modelling a highly dexterous 2-module soft robot for minimally invasive surgery (MIS). / Methods: A soft robotic approach is proposed that uses flexible fluidic actuators (FFAs) allowing highly dexterous and inherently safe navigation. Dexterity is provided by an optimized design of fluid chambers within the robot modules. Safe physical interaction is ensured by fabricating the entire structure by soft and compliant elastomers, resulting in a squeezable 2-module robot. An inner free lumen/chamber along the central axis serves as a guide of flexible endoscopic tools. A constant curvature based inverse kinematics model is also proposed, providing insight into the robot capabilities. / Results: Experimental tests in a surgical scenario using a cadaver model are reported, demonstrating the robot advantages over standard systems in a realistic MIS environment. / Conclusion: Simulations and experiments show the efficacy of the proposed soft robot

    Design and Control of Robotic Systems for Lower Limb Stroke Rehabilitation

    Get PDF
    Lower extremity stroke rehabilitation exhausts considerable health care resources, is labor intensive, and provides mostly qualitative metrics of patient recovery. To overcome these issues, robots can assist patients in physically manipulating their affected limb and measure the output motion. The robots that have been currently designed, however, provide assistance over a limited set of training motions, are not portable for in-home and in-clinic use, have high cost and may not provide sufficient safety or performance. This thesis proposes the idea of incorporating a mobile drive base into lower extremity rehabilitation robots to create a portable, inherently safe system that provides assistance over a wide range of training motions. A set of rehabilitative motion tasks were established and a six-degree-of-freedom (DOF) motion and force-sensing system was designed to meet high-power, large workspace, and affordability requirements. An admittance controller was implemented, and the feasibility of using this portable, low-cost system for movement assistance was shown through tests on a healthy individual. An improved version of the robot was then developed that added torque sensing and known joint elasticity for use in future clinical testing with a flexible-joint impedance controller

    An Underactuated Flexible Instrument for Single Incision Laparoscopic Surgery

    Get PDF
    More and more patients and surgeons have switched from open surgery to minimally invasive surgery over these years. This exciting advancement has brought massive benefits to patients. Researchers and institutions have proposed robot assisted surgery which combines the advantage of developed robot system and human experience. This thesis reviews state of the art in this area and analyze some advanced surgical instrument for single incision laparoscopic instrument, then propose a design of robotic instrument for single incision laparoscopic surgery which can be integrated with collaborative robot manipulator to construct a surgical robot system.Single-incision laparoscopic surgery (SILS) has its own features and advantages compare to other minimally invasive surgery techniques which also lead to special design requirements for SILS instruments, among which increased flexibility compare to multi-incision surgery instruments is an important part. So we want to design a robotic surgical instrument that has increased flexibility compare to traditional instruments for other MIS techniques. As a laparoscopic robotic instrument compactness and light weight are also our considerations.Single incision laparoscopic surgery (SILS) inserts multiple instruments and laparoscopes through a single trocar which reduces trauma. But this improvement for patients caused difficulty in operation because of instruments triangulation, laparoscope field-of-view, etc. That brings up our challenges in designing a robotic instruments. Designing a highly flexible robotic instrument that provides sufficient workspace and good triangulation in order to relieve the difficulties introduced by narrow instrument trocars.We want to implement a highly recognized surgical instrument with a designed robotic instrument actuation pack. These two parts compose a robotic surgical instrument for single incision laparoscopic surgery. And we want to analyze the performance and viability of our design approach for SILS application

    Dynamics for variable length multisection continuum arms

    Get PDF
    Variable length multisection continuum arms are a class of continuum robotic manipulators that generate motion by structural mechanical deformation. Unlike most continuum robots, the sections of these arms do not have (central) supporting flexible backbone, and are actuated by multiple variable length actuators. Because of the constraining nature of actuators, the continuum sections can bend and/or elongate (compress) depending on the elongation/contraction characteristics of the actuators being used. Continuum arms have a number of distinctive differences with respect to traditional rigid arms namely: smooth bending, high inherent compliance, and adaptive whole arm grasping. However, due to numerical instability and the complexity of curve parametric models, there are no spatial dynamic models for multisection continuum arms. This paper introduces novel spatial dynamics and applies these to variable length multisection continuum arms with any number of sections. An efficient recursive computational scheme for deriving the equations of motion is presented. This is applied in a general form based on structurally accurate and numerically well-posed modal kinematics that assumes circular arc deformation of continuum sections without torsion. It is shown that the proposed modal dynamics are highly scalable, producing efficient and accurate numerical results. The spatial dynamic simulation results are experimentally validated using a pneumatic muscle actuated multisection prototype continuum arm. For the first time this enables investigation of spatial dynamic effects in this class of continuum arms
    corecore