898 research outputs found

    Modular and Analytical Methods for Solving Kinematics and Dynamics of Series-Parallel Hybrid Robots

    Get PDF
    While serial robots are known for their versatility in applications, larger workspace, simpler modeling and control, they have certain disadvantages like limited precision, lower stiffness and poor dynamic characteristics in general. A parallel robot can offer higher stiffness, speed, accuracy and payload capacity, at the downside of a reduced workspace and a more complex geometry that needs careful analysis and control. To bring the best of the two worlds, parallel submechanism modules can be connected in series to achieve a series-parallel hybrid robot with better dynamic characteristics and larger workspace. Such a design philosophy is being used in several robots not only at DFKI (for e.g., Mantis, Charlie, Recupera Exoskeleton, RH5 humanoid etc.) but also around the world, for e.g. Lola (TUM), Valkyrie (NASA), THOR (Virginia Tech.) etc.These robots inherit the complexity of both serial and parallel architectures. Hence, solving their kinematics and dynamics is challenging because they are subjected to additional geometric loop closure constraints. Most approaches in multi-body dynamics adopt numerical resolution of these constraints for the sake of generality but may suffer from inaccuracy and performance issues. They also do not exploit the modularity in robot design. Further, closed loop systems can have variable mobility, different assembly modes and can impose redundant constraints on the equations of motion which deteriorates the quality of many multi-body dynamics solvers. Very often only a local view to the system behavior is possible. Hence, it is interesting for geometers or kinematics researchers, to study the analytical solutions to geometric problems associated with a specific type of parallel mechanism and their importance over numerical solutions is irrefutable. Techniques such as screw theory, computational algebraic geometry, elimination and continuation methods are popular in this domain. But this domain specific knowledge is often underrepresented in the design of model based kinematics and dynamics software frameworks. The contributions of this thesis are two-fold. Firstly, a rigorous and comprehensive kinematic analysis is performed for the novel parallel mechanisms invented recently at DFKI-RIC such as RH5 ankle mechanism and Active Ankle using approaches from computational algebraic geometry and screw theory. Secondly, the general idea of a modular software framework called Hybrid Robot Dynamics (HyRoDyn) is presented which can be used to solve the geometry, kinematics and dynamics of series-parallel hybrid robotic systems with the help of a software database which stores the analytical solutions for parallel submechanism modules in a configurable and unit testable manner. HyRoDyn approach is suitable for both high fidelity simulations and real-time control of complex series-parallel hybrid robots. The results from this thesis has been applied to two robotic systems namely Recupera-Reha exoskeleton and RH5 humanoid. The aim of this software tool is to assist both designers and control engineers in developing complex robotic systems of the future. Efficient kinematic and dynamic modeling can lead to more compliant behavior, better whole body control, walking and manipulating capabilities etc. which are highly desired in the present day and future robotic applications

    A methodology for the Lower Limb Robotic Rehabilitation system

    Get PDF
    The overall goal of this thesis is to develop a new functional lower limb robot-assisted rehabilitation system for people with a paretic lower limb. A unilateral rehabilitation method is investigated, where the robot acts as an assistive device to provide the impaired leg therapeutic training through simulating the kinematics and dynamics of the ankle and lower leg movements. Foot trajectories of healthy subjects and post-stroke patients were recorded by a dedicated optical motion tracking system in a clinical gait measurement laboratory. A prototype 6 degrees of freedom parallel robot was initially built in order to verify capability of achieving singularity-free foot trajectories of healthy subjects in various exercises. This was then followed by building and testing another larger parallel robot to investigate the real-sized foot trajectories of patients. The overall results verify the designed robot’s capability in successfully tracking foot trajectories during different exercises. The thesis finally proposes a system of bilateral rehabilitation based on the concept of self-learning, where a passive parallel mechanism follows and records motion signatures of the patient’s healthy leg, and an active parallel mechanism provides motion for the impaired leg based on the kinematic mapping of the motion produced by the passive mechanism

    Passive exercise adaptation for ankle rehabilitation based on learning control framework

    Get PDF
    This article belongs to the Special Issue Human-Robot Interaction.Ankle injuries are among the most common injuries in sport and daily life. However, for their recovery, it is important for patients to perform rehabilitation exercises. These exercises are usually done with a therapist's guidance to help strengthen the patient's ankle joint and restore its range of motion. However, in order to share the load with therapists so that they can offer assistance to more patients, and to provide an efficient and safe way for patients to perform ankle rehabilitation exercises, we propose a framework that integrates learning techniques with a 3-PRS parallel robot, acting together as an ankle rehabilitation device. In this paper, we propose to use passive rehabilitation exercises for dorsiflexion/plantar flexion and inversion/eversion ankle movements. The therapist is needed in the first stage to design the exercise with the patient by teaching the robot intuitively through learning from demonstration. We then propose a learning control scheme based on dynamic movement primitives and iterative learning control, which takes the designed exercise trajectory as a demonstration (an input) together with the recorded forces in order to reproduce the exercise with the patient for a number of repetitions defined by the therapist. During the execution, our approach monitors the sensed forces and adapts the trajectory by adding the necessary offsets to the original trajectory to reduce its range without modifying the original trajectory and subsequently reducing the measured forces. After a predefined number of repetitions, the algorithm restores the range gradually, until the patient is able to perform the originally designed exercise. We validate the proposed framework with both real experiments and simulation using a Simulink model of the rehabilitation parallel robot that has been developed in our lab

    Passive Exercise Adaptation for Ankle Rehabilitation Based on Learning Control Framework

    Full text link
    [EN] Ankle injuries are among the most common injuries in sport and daily life. However, for their recovery, it is important for patients to perform rehabilitation exercises. These exercises are usually done with a therapist's guidance to help strengthen the patient's ankle joint and restore its range of motion. However, in order to share the load with therapists so that they can offer assistance to more patients, and to provide an efficient and safe way for patients to perform ankle rehabilitation exercises, we propose a framework that integrates learning techniques with a 3-PRS parallel robot, acting together as an ankle rehabilitation device. In this paper, we propose to use passive rehabilitation exercises for dorsiflexion/plantar flexion and inversion/eversion ankle movements. The therapist is needed in the first stage to design the exercise with the patient by teaching the robot intuitively through learning from demonstration. We then propose a learning control scheme based on dynamic movement primitives and iterative learning control, which takes the designed exercise trajectory as a demonstration (an input) together with the recorded forces in order to reproduce the exercise with the patient for a number of repetitions defined by the therapist. During the execution, our approach monitors the sensed forces and adapts the trajectory by adding the necessary offsets to the original trajectory to reduce its range without modifying the original trajectory and subsequently reducing the measured forces. After a predefined number of repetitions, the algorithm restores the range gradually, until the patient is able to perform the originally designed exercise. We validate the proposed framework with both real experiments and simulation using a Simulink model of the rehabilitation parallel robot that has been developed in our lab.This work has been partially funded by the FEDER-CICYT project with reference DPI2017-84201-R (Integracion de modelos biomecanicos en el desarrollo y operacion de robots rehabilitadores reconfigurables) financed by Ministerio de Economia, Industria e Innovacion (Spain).Abu-Dakka, FJ.; Valera Fernández, Á.; Escalera, JA.; Abderrahim, M.; Page Del Pozo, AF.; Mata Amela, V. (2020). Passive Exercise Adaptation for Ankle Rehabilitation Based on Learning Control Framework. Sensors. 20(21):1-23. https://doi.org/10.3390/s20216215S123202

    serial and parallel robotics: energy saving systems and rehabilitation devices

    Get PDF
    This thesis focuses on the design and discussion of robotic devices and their applications. Robotics is the branch of technology that deals with the design, construction, operation, and application of robots as well as computer systems for their control, sensory feedback, and information processing [1]. Nowadays, robotics has been an unprecedented increase in applications of industry, military, health, domestic service, exploration, commerce, etc. Different applications require robots with different structures and different functions. Robotics normally includes serial and parallel structures. To have contribution to two kinds of structures, this thesis consisting of two sections is devoted to the design and development of serial and parallel robotic structures, focused on applications in the two different fields: industry and health

    Structure design, kinematics analysis, and effect evaluation of a novel ankle rehabilitation robot

    Get PDF
    This paper presents a novel ankle rehabilitation (2-CRS+PU)&R hybrid mechanism, which can meet the size requirements of different adult lower limbs based on the three-movement model of the ankle. This model is related to three types of movement modes of the ankle movement, without axis offset, which can cover the ankle joint movements. The inverse and forward position/kinematics results analysis of the mechanism is established based on the closed-loop vector method and using the optimization of particle groups algorithm. Four groups of position solutions of the mechanism are obtained. The kinematics simulation is analyzed using ADAMS software. The variations of the velocity and acceleration of all limbs are stable, without any sudden changes, which can effectively ensure the safety and comfort of the ankle model end-user. The dexterity of the mechanism is analyzed based on the transport function, and the results indicate that the mechanism has an excellent transfer performance in yielding the structure parameters. Finally, the rehabilitation evaluation is conducted according to the three types of movement modes of the ankle joint. The results show that this ankle rehabilitation mechanism can provide a superior rehabilitation function

    MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics

    Full text link
    El libro de actas recoge las aportaciones de los autores a través de los correspondientes artículos a la Dinámica de Sistemas Multicuerpo y la Mecatrónica (Musme). Estas disciplinas se han convertido en una importante herramienta para diseñar máquinas, analizar prototipos virtuales y realizar análisis CAD sobre complejos sistemas mecánicos articulados multicuerpo. La dinámica de sistemas multicuerpo comprende un gran número de aspectos que incluyen la mecánica, dinámica estructural, matemáticas aplicadas, métodos de control, ciencia de los ordenadores y mecatrónica. Los artículos recogidos en el libro de actas están relacionados con alguno de los siguientes tópicos del congreso: Análisis y síntesis de mecanismos ; Diseño de algoritmos para sistemas mecatrónicos ; Procedimientos de simulación y resultados ; Prototipos y rendimiento ; Robots y micromáquinas ; Validaciones experimentales ; Teoría de simulación mecatrónica ; Sistemas mecatrónicos ; Control de sistemas mecatrónicosUniversitat Politècnica de València (2011). MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/13224Archivo delegad

    Stiffness evaluation of a novel ankle rehabilitation exoskeleton with a type-variable constraint

    Get PDF
    This paper presents a novel ankle rehabilitation exoskeleton with two rotational degrees of freedom, which is suitable for dynamical rehabilitation for patients with neurological impairments. Its stiffness performance is assessed in consideration that the interaction between the footplate and the ground may deflect the mechanism away from the desired/predefined motion patterns. The novel design employs a universal-prismatic-universal (U-P-U) joint link, whose constraint type changes between a couple and a line vector during manipulation of the exoskeleton. To conduct a stiffness analysis of such a mechanism with a type-variable constraint – for the first time – a modified screw-based method (SBM) is proposed. Comparisons with the results obtained from finite element analysis verified that, the modified SBM provides reliable estimates of the exoskeleton's stiffness within the complete workspace (covering the constraint-type transition configurations). The stiffness of the exoskeleton is further evaluated by acquiring the minimum/maximum stiffness values, after computing the distribution of the most crucial linear and angular stiffness parameters within the workspace. Moreover, the influence of the architectural parameters on the stiffness properties is considered for further design optimization
    corecore