288 research outputs found

    Technology transfer: Transportation

    Get PDF
    The application of NASA derived technology in solving problems related to highways, railroads, and other rapid systems is described. Additional areas/are identified where space technology may be utilized to meet requirements related to waterways, law enforcement agencies, and the trucking and recreational vehicle industries

    Southwest Research Institute assistance to NASA in biomedical areas of the technology utilization program

    Get PDF
    The activities are reported of the NASA Biomedical Applications Team at Southwest Research Institute between 25 August, 1972 and 15 November, 1973. The program background and methodology are discussed along with the technology applications, and biomedical community impacts

    Applications of aerospace technology in the public interest: Pollution measurement

    Get PDF
    This study of selected NASA contributions to the improvement of pollution measurement examines the pervasiveness and complexity of the economic, political, and social issues in the environmental field; provides a perspective on the relationship between the conduct of aerospace R and D and specific improvements in on site air pollution monitoring equipment now in use; describes the basic relationship between the development of satellite-based monitoring systems and their influence on long-term progress in improving environmental quality; and comments on how both instrumentation and satellite remote sensing are contributing to an improved environment. Examples of specific gains that have been made in applying aerospace R and D to environmental problem-solving are included

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 140

    Get PDF
    This bibliography lists 306 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1975

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 145

    Get PDF
    This bibliography lists 301 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1975

    NASA Tech Briefs Index, 1978

    Get PDF
    Approximately 601 announcements of new technology derived from the research and development activities of the National Aeronautics and Space Administration are presented. Emphasis is placed on information considered likely to be transferrable across industrial, regional, or disciplinary lines. Subject matter covered includes: electronic components and circuits; electron systems; physical sciences; materials; life sciences; mechanics; machinery; fabrication technology; and mathematics and information sciences

    NASA/ASEE Summer Faculty Fellowship Program. 1994 research reports

    Get PDF
    This document is a collection of technical reports on research conducted by the participants in the 1994 NASA/ASEE Summer Faculty Fellowship Program at Kennedy Space Center (KSC). This was the tenth year that a NASA/ASEE program has been conducted at KSC. The 1994 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Office of Educational Affairs, NASA Headquarters, Washington, D.C. The KSC Program was one of nine such Aeronautics and Space Research Programs funded by NASA Headquarters in 1994. The NASA/ASEE program is intended to be a two-year program to allow in-depth research by the University faculty member. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many problems of current interest to NASA/KSC

    Fire and Life Safety Analysis: Building 171A – Poly Canyon Village

    Get PDF
    A fire and life safety analysis was performed in fulfillment of one of the requirements for the Master of Science Degree in Fire Protection Engineering from California Polytechnic State University San Luis Obispo (Cal Poly). The analysis consisted of a prescriptive and a performance-based analysis. These analyses were performed on Building 171A which is part of the Cal Poly San Luis Obispo campus. The prescriptive analysis consisted of four distinct areas of focus: 1) Structural Fire Protection, 2) Water-Based Suppression Systems, 3) Fire Alarm and Detection Systems, 4) Egress Analysis and Design Prescriptive analyses are performed to determine whether a building conforms to the applicable codes and standards. The prescriptive analysis of Building 171A was undertaken using the 2016 editions of the California Building Code (CBC) and California Fire Code (CFC), and the most recent editions of various National Fire Protection Association (NFPA) codes. No deficiencies were encountered in the structural fire protection, water-based suppression systems, fire alarm and detection systems, or the egress design of Building 171A. Information required to establish code compliance beyond all doubt was occasionally not available. In such cases, it was assumed the system or systems were arranged in such a way as to be compliant else the building plans would not have been approved. This analysis determined Building 171A to be in compliance with code requirements. Performance-based analyses are used to establish the functionality of a building’s fire protection strategy by using performance criteria that demonstrate compliance with design goals. Because of the residential nature of Building 171A, the ability of occupants to evacuate safely was assessed. Two viable fire scenarios specific to Building 171A were evaluated using Fire Dynamics Simulator (FDS) and Pathfinder. The first design fire was modeled as an arson fire on the second floor of the central stairway. For this fire, a commonly used liquid accelerant was assumed. The fuel was treated as a pool fire with no growth phase. Physical properties like soot and carbon monoxide yield from the Society of Fire Protection Engineers (SFPE) Handbook were entered into the model to increase the accuracy of results. Tenability criteria were not exceeded at any point during the simulation for this design fire. Therefore the available safe egress time (ASET) was greater than the model run time of 600 seconds. The second design fire was modeled as a furniture fire in the study room on the second floor. This fire was assumed to initiate in an armchair. Exact materials could not be determined however the individual component materials must result in an item that as a whole complies with California Technical Bulletin 133 (CTB 133). Calculations for this fire were based on a fast αt2 fire with a maximum heat release rate of 80 kW. The predominant material was assumed to be flexible polyurethane foam with the worst carbon monoxide and soot yields. From SFPE Handbook tables, this was determined to be GM27 polyurethane. The tenability criteria monitored for the duration of the simulation were not exceeded at any point for this design fire. Therefore the ASET was greater than the model run time of 600 seconds. Occupant characteristics were entered into Pathfinder, an agent-based egress modeling program, to determine the required safe egress time (RSET). A pre-movement time was incorporated into the model encompassing detection, alarm activation, and occupant response time. In consideration of the wide variability of occupants’ responses, a factor of safety of 1.5 was also included. The RSET for the Central Stairway and Study Room fires was calculated to be 440 and 490 seconds, respectively. This is considerably less than the ASET since tenability did not fail within the 600 seconds of model run time. Therefore both fire scenarios had RSET values less than ASET values indicating that passive and active fire protection systems in Building 171A would enable occupants to safely evacuate

    Landfill gas operation and maintenance manual of practice

    Full text link

    The Boston University Photonics Center annual report 2005-2006

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2005-2006 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This Annual Report is intended to serve as a synopsis of the Boston University Photonics Center’s wide-ranging activities for the period from July 2005 through June 2006, corresponding to the University’s fiscal year. It is my hope that the document is reflective of the Center’s core values in innovation, entrepreneurship, and education, and that it projects our shared vision, and our dedication to excellence in this exciting field. For further information, you may visit our new website at www.bu.edu/photonics. Though only recently appointed as Director, my involvement in Center activities dates back to the Center’s formation more than ten years ago. In the early years, I worked with a team of faculty and staff colleagues to design and construct the shared laboratories that now provide every Center member extraordinary capabilities for fabrication and testing of advanced photonic devices and systems. I helped launch the business incubator by forming a company around an idea that emerged from my research laboratory. While that company failed to realize its vision of transforming the compact disc industry, it did help us form a unique vision for our program of academically engaged business acceleration. I co-developed a course in optical microsystems for telecommunications that I taught to advanced undergraduates and graduate students in the new M.S. degree program in Photonics offered through the Electrical and Computer Engineering Department. And since the Center’s inception, I have contributed to its scholarly mission through my work in optical microsystem design and precision manufacturing at the Center’s core Precision Engineering Research Laboratory. Recently, I had the opportunity to lead the Provost’s Faculty Advisory Committee on Photonics, charged with broadening the Center’s mission to better integrate academic and educational programs with its more established programs for business incubation and prototype development. [TRUNCATED
    • …
    corecore