176,490 research outputs found

    Integration of a Manufacturing Model with State-of-the-art PDM System

    Get PDF
    Product Data Management (PDM) systems and manufacturing models operate independently does not constitute powerful solution in a distributed and collaborative product development and manufacturing environment. In addition there is also lack of research issues addressing the implementation of conceptual design and process planning stage to utilise PDM system, which offering collaborative development in a World Wide Web. To ensure competitive advantage, comprehensive system integration is needed in order to support and enhance the product development and manufacturing activities. This paper focuses on research concerned with providing this level of support through the use of an in-house manufacturing model and a commercially available PDM system. In particular it focuses on fundamental concept of the overall system integration ideas and methodologies. The manufacturing model and PDM system are based upon, respectively, the CAPABLE Aggregate Process Planning System developed by Design and Manufacturing Group, University of Durham and PTC Windchill

    Digital Ecosystem - A next generation of the collaborative environment

    Get PDF
    Abstract Digital ecosystems transcend the traditional, rigorously defined, collaborative environments from centralised, distributed or hybrid models into an open, flexible, domain cluster, demand-driven, interactive environment. A digital ecosystem is a new-networked architecture and collaborative environment that addresses the weakness of client-server, peer-to-peer, Grid and web services. In this keynote, we will provide a detailed explanation of digital ecosystems, their analogy to ecological systems, their scientific innovation, technical exploration including architecture, swarm intelligence, design and implementation, their comparison to existing networked architecture, social, cultural and economic impact the networked economy. We will also provide several practical examples as well as demonstration of swarm intelligence-based self-organised digital ecosystems

    Synchronous communication in PLM environments using annotated CAD models

    Full text link
    The connection of resources, data, and knowledge through communication technology plays a vital role in current collaborative design methodologies and Product Lifecycle Management (PLM) systems, as these elements act as channels for information and meaning. Despite significant advances in the area of PLM, most communication tools are used as separate services that are disconnected from existing development environments. Consequently, during a communication session, the specific elements being discussed are usually not linked to the context of the discussion, which may result in important information getting lost or becoming difficult to access. In this paper, we present a method to add synchronous communication functionality to a PLM system based on annotated information embedded in the CAD model. This approach provides users a communication channel that is built directly into the CAD interface and is valuable when individuals need to be contacted regarding the annotated aspects of a CAD model. We present the architecture of a new system and its integration with existing PLM systems, and describe the implementation details of an annotation-based video conferencing module for a commercial CAD application.This work was supported by the Spanish Ministry of Economy and Competitiveness and the FEDER Funds, through the ANNOTA project (Ref. TIN2013-46036-C3-1-R).Camba, JD.; Contero, M.; Salvador Herranz, GM.; Plumed, R. (2016). Synchronous communication in PLM environments using annotated CAD models. Journal of Systems Science and Systems Engineering. 25(2):142-158. https://doi.org/10.1007/s11518-016-5305-5S142158252Abrahamson, S., Wallace, D., Senin, N. & Sferro, P. (2000). Integrated design in a service marketplace. Computer-Aided Design, 32(2):97–107.Ahmed, S. (2005). Encouraging reuse of design knowledge: a method to index knowledge. Design Studies, 26:565–592.Alavi, M. & Tiwana, A (2002). Knowledge integration in virtual teams: the potential role of KMS. Journal of the American Society for Information Science and Technology, 53:1029–1037.Ameri, F. & Dutta, D. (2005). Product lifecycle management: closing the knowledge loops. Computer-Aided Design and Applications, 2(5):577–590.Anderson, A.H., Smallwood, L., MacDonald, R., Mullin, J., Fleming, A. & O'Malley, C. (2000). Video data and video links in mediated communication: what do users value? International Journal of Human-Computer Studies, 52(1):165–187.Arias, E., Eden, H., Fischer, G., Gorman, A. & Scharff, E. (2000). Transcending the individual human mind–creating shared understanding through collaborative design. ACM Transactions on Computer-Human Interaction (TOCHI) 7(1): 84–113.Barley, W.C., Leonardi, P.M., & Bailey, D.E. (2012). Engineering objects for collaboration: strategies of ambiguity and clarity at knowledge boundaries. Human Communication Research, 38:280–308.Boujut, J.F. & Dugdale, J. (2006). Design of a 3D annotation tool for supporting evaluation activities in engineering design. Cooperative Systems Design, COOP 6:1–8.Camba, J., Contero, M., Johnson, M. & Company, P. (2014). Extended 3D annotations as a new mechanism to explicitly communicate geometric design intent and increase CAD model reusability. Computer-Aided Design, 57:61–73.Camba, J., Contero, M. & Salvador-Herranz, G. (2014). Speak with the annotator: promoting interaction in a knowledge-based CAD environment built on the extended annotation concept. Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 196–201.Chudoba, K.M., Wynn, E., Lu, M. & Watson-Manheim, M.B. (2005). How virtual are we? Measuring virtuality and understanding its impact in a global organization. Information Systems Journal, 15(4):279–306.Danesi, F., Gardan, N. & Gardan, Y. (2006). Collaborative Design: from Concept to Application. Geometric Modeling and Imaging—New Trends, 90–96.Durstewitz, M., Kiefner, B., Kueke, R., Putkonen, H., Repo, P. & Tuikka, T. (2002). Virtual collaboration environment for aircraft design. Proceedings of the IEEE 6th International Conference on Information Visualisation, 502–507.Fisher, D., Brush, A.J., Gleave, E. & Smith, M.A. (2006). Revisiting Whittaker and Sidner’s email overload ten years later. Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work. ACM, BanffFonseca, M.J., Henriques, E., Silva, N., Cardoso, T. & Jorge, J.A. (2006). A collaborative CAD conference tool to support mobile engineering. Rapid Product Development (RPD’06), Marinha Grande, Portugal.Frechette, S.P. (2011). Model based enterprise for manufacturing. Proceedings of the 44th CIRP International Conference on Manufacturing Systems.Fu, W.X., Bian, J. & Xu, Y.M. (2013). A video conferencing system for collaborative engineering design. Applied Mechanics and Materials, 344:246–252.Fuh, J.Y.H. & Li, W.D. (2005). Advances in collaborative CAD: the-state-of-the art. Computer-Aided Design, 37:571–581.Fussell, S.R., Kraut, R.E. & Siegel, J. (2000). Coordination of communication: effects of shared visual context on collaborative work. Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, 21–30.Gajewska, H., Kistler, J., Manasse, M.S. & Redell, D. (1994). Argo: a system for distributed collaboration. Proceedings of the ACM Second International Conference on Multimedia, San Francisco, CA, USA. 433–440.Gantz, J., Reinsel, D., Chute, C., Schlichting, W., Mcarthur, J., Minton, S., Xheneti, I., Toncheva, A. & Manfrediz, A. (2007). The expanding digital universe: a forecast of worldwide information growth through 2010. IDC, Massachusetts.Gowan, Jr. J.A. & Downs, J.M. (1994). Video conferencing human-machine interface: a field study. Information and Management, 27(6):341–356.Gupta, A., Mattarelli, E., Seshasai, S. & Broschak, J. (2009). Use of collaborative technologies and knowledge sharing in co-located and distributed teams: towards the 24-h knowledge factory. The Journal of Strategic Information Systems, 18:147–161.Hickson, I. (2009). The Web Socket Protocol IETF, Standards Track.Hong, J., Toye, G. & Leifer, L.J. (1996). Engineering design notebook for sharing and reuse. Computers in Industry, 29:27–35.Isaacs, E.A. & Tang, J.C. (1994). What video can and cannot do for collaboration: a case study. Multimedia Systems, 2(2):63–73.Karsenty, L. (1999). Cooperative work and shared visual context: an empirical study of comprehension problems in side-by-side and remote help dialogues. Human Computer Interaction, 14(3): 283–315.Lahti, H., Seitamaa-Hakkarainen, P. & Hakkarainen, K. (2004). Collaboration patterns in computer supported collaborative designing. Design Studies, 25:351–371.Leenders, R.T.A., Van Engelen, J.M. & Kratzer, J. (2003). Virtuality, communication, and new product team creativity: a social network perspective. Journal of Engineering and Technology Management, 20(1):69–92.Levitt, R.E., Jin, Y. & Dym, C.L. (1991). Knowledge-based support for management of concurrent, multidisciplinary design. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing, 5(2):77–95.Li, C., McMahon, C. & Newnes, L. (2009). Annotation in product lifecycle management: a review of approaches. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2009. Vol. 2. New York: ASME, 797–806.Li, W.D., Lu, W.F., Fuh, J.Y. & Wong, Y.S. (2005). Collaborative computer-aided design-research and development status. Computer-Aided Design, 37(9):931–940.Londono, F., Cleetus, K.J., Nichols, D.M., Iyer, S., Karandikar, H.M., Reddy, S.M., Potnis, S.M., Massey, B., Reddy, A. & Ganti, V. (1992). Coordinating a virtual team. CERC-TR-RN-92-005, Concurrent Engineering Research Centre, West Virginia University, West Virginia.Lubell, J., Chen, K., Horst, J., Frechette, S., & Huang, P. (2012). Model based enterprise/technical data package summit report. NIST Technical Note, 1753.May, A. & Carter, C. (2001). A case study of virtual team working in the European automotive industry. International Journal of Industrial Ergonomics, 27(3):171–186.Olson, J.S., Olson, G.M. & Meader, D.K. (1995). What mix of video and audio is useful for small groups doing remote real-time design work? Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, Addison-Wesley Publishing Co.Ping-Hung, H., Mishra, C.S. & Gobeli, D.H. (2003). The return on R&D versus capital expenditures in pharmaceutical and chemical industries. IEEE Transactions on Engineering Management, 50:141–150.Sharma, A. (2005). Collaborative product innovation: integrating elements of CPI via PLM framework. Computer-Aided Design, 37(13):1425–1434.Shum, S.J.B., Selvin, A.M., Sierhuis, M., Conklin, J., Haley, C.B. & Nuseibeh, B. (2006). Hypermedia support for argumentation-based rationale: 15 Years on from Gibis and Qoc. Rationale Management in Software Engineering, 111–132.Siltanen, P. & Valli, S. (2013). Web-based 3D Mediated Communication in Manufacturing Industry. Concurrent Engineering Approaches for Sustainable Product Development in a Multidisciplinary Environment, 1181–1192. Springer London.Stark, J. (2011). Product Lifecycle Management. 1–16. Springer London.Tavcar, J., Potocnik, U. & Duhovnik, J. (2013). PLM used as a backbone for concurrent engineering in supply chain. Concurrent Engineering Approaches for Sustainable Product Development in a Multi-Disciplinary Environment, 681–692.Tay, F.E.H. & Ming, C. (2001). A shared multi-media design environment for concurrent engineering over the internet. Concurrent Engineering, 9(1):55–63.Tay, F.E.H. & Roy, A. (2003). CyberCAD: a collaborative approach in 3D-CAD technology in a multimedia-supported environment. Computers in Industry, 52(2):127–145.Toussaint, J. & Cheng, K. (2002). Design agility and manufacturing responsiveness on the web. Integrated Manufacturing Systems, 13(5):328–339.Tsoi, K.N. & Rahman, S.M. (1996). Media-on-demand multimedia electronic mail: a tool for collaboration on the web. Proceedings of the 5th IEEE International Symposium on High Performance Distributed Computing.Upton, D.M. & Mcafee, A. (1999). The Real Virtual Factory. Harvard Business School Press, 69–89.Vila, C., Estruch, A., Siller, H.R., Abellán, J.V. & Romero, F. (2007). Workflow methodology for collaborative design and manufacturing. Cooperative Design, Visualization, and Engineering 42–49, Springer Berlin Heidelberg.Wasiak, J., Hicks, B., Newnes, L., Dong, A., & Burrow, L. (2010). Understanding engineering email: the development of a taxonomy for identifying and classifying engineering work. Research in Engineering Design, 21(1):43–64.Wasko, M.M. & Faraj, S. (2005). Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Quarterly: Management Information Systems, 29:35–57.Yang, Q.Z., Zhang, Y., Miao, C.Y. & Shen, Z.Q. (2008). Semantic annotation of digital engineering resources for multidisciplinary design collaboration. ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 617–624. American Society of Mechanical Engineers.You, C.F. & Chao, S.N. (2006). Multilayer architecture in collaborative environment. Concurrent Engineering Research and Applications, 14(4):273–281.Yuan, Y.C., Fulk, J., Monge, P.R. & Contractor, N. (2010). Expertise directory development, shared task interdependence, and strength of communication network ties as multilevel predictors of expertise exchange in transactive memory work groups. Communication Research, 37: 20–47

    Implementation challenges of annotated 3D models in collaborative design environments

    Full text link
    Recent studies in the area of collaborative design have proposed the use of 3D annotations as a tool to make design information explicitly available within the 3D model, so that different stakeholders can share information throughout the product lifecycle. Annotation practices defined by the latest digital definition standards have formalized the presentation of information and facilitated the implementation of annotation tools in CAD systems. In this paper, we review the latest studies in annotation methods and technologies and explore their expected benefits in the context of collaborative design. Next, we analyze the implementation challenges of different annotation approaches, focusing specifically on design intent annotations. An analysis of the literature suggests that the use of annotations has a positive effect on collaborative design communication as long as proper implementation practices, tools, and user interaction mechanisms are in placeCamba, J.; Contero, M.; Salvador Herranz, GM. (2014). Implementation challenges of annotated 3D models in collaborative design environments. Lecture Notes in Computer Science. 8683:222-229. doi:10.1007/978-3-319-10831-5_332222298683Katzenbach, J.R., Smith, D.K.: The Discipline of Teams. Harvard Business Review 71(2), 111–120 (2005)Campion, M.A., Medsker, G.J., Higgs, A.C.: Relations between Work Group Characteristics and Effectiveness: Implications for Designing Effective Work Groups. Personnel Psychology 46, 823–850 (1993)Chudoba, K.M., Wynn, E., Lu, M., Watson-Manheim, M.B.: How Virtual Are We? Measuring Virtuality and Understanding its Impact in a Global Organization. Information Systems Journal 15, 279–306 (2005)Lahti, H., Seitamaa-Hakkarainen, P., Hakkarainen, K.: Collaboration Patterns in Computer Supported Collaborative Designing. Design Studies 25, 351–371 (2004)Chang, K.H., Silva, J., Bryant, I.: Concurrent Design and Manufacturing for Mechanical Systems. Concurrent Engineering 7, 290–308 (1999)Jackson, C., Buxton, M.: The Design Reuse Benchmark Report: Seizing the Opportunity to Shorten Product Development. Aberdeen Group, Boston (2007)Lang, S., Dickinson, J., Buchal, R.O.: Cognitive Factors in Distributed Design. Computers in Industry 48, 89–98 (2002)Alemanni, M., Destefanis, F., Vezzetti, E.: Model-Based Definition Design in the Product Lifecycle Management Scenario. International Journal of Advanced Manufacturing Technology 52(1-4), 1–14 (2011)ASME: ASME Y14.41-2012 Digital Product Definition Data Practices. The American Society of Mechanical Engineers, New York (2012)ISO: ISO 16792:2006 Technical Product Documentation – Digital Product Definition Data Practices. Organisation Internationale de Normalisation, GenĂšve, Suisse (2006)Bracewell, R.H., Wallace, K.M.: A Tool for Capturing Design Rationale. In:14th International Conference on Engineering Design, Design Society, Stockholm, Sweden (2003)Boujut, J.F., Dugdale, J.: Design of a 3D Annotation Tool for Supporting Evaluation Activities in Engineering Design. Cooperative Systems Design, COOP 6, 1–8 (2006)Alducin-Quintero, G., Rojo, A., Plata, F., HernĂĄndez, A., Contero, M.: 3D Model Annotation as a Tool for Improving Design Intent Communication: A Case Study on its Impact in the Engineering Change Process. In: ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Chicago, Illinois (2012)Sandberg, S., NĂ€sström, M.: A Proposed Method to Preserve Knowledge and Information by Use of Knowledge Enabled Engineering. In: ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Las Vegas, Nevada (2007)Dorribo-Camba, J., Alducin-Quintero, G., Perona, P., Contero, M.: Enhancing Model Reuse through 3D Annotations: A Theoretical Proposal for an Annotation-Centered Design Intent and Design Rationale Communication. In: ASME International Mechanical Engineering Congress & Exposition, San Diego, California (2013)Ding, L., Ball, A., Patel, M., Matthews, J., Mullineux, G.: Strategies for the Collaborative Use of CAD Product Models. In: 17th International Conference on Engineering Design, vol. 8, pp. 123–134 (2009)Davies, D., McMahon, C.A.: Multiple Viewpoint Design Modelling through Semantic Markup. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Philadelphia, PA, vol. 3, pp. 561–571 (2006)Pena-Mora, F., Sriram, D., Logcher, R.: SHARED-DRIMS: SHARED Design Recommendation-Intent Management System. Enabling Technologies: Infrastructure for Collaborative Enterprises, 213–221 (1993)Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., Ramani, K.: Shape-based Searching for Product Lifecycle Applications. Computer-Aided Design 37(13), 1435–1446 (2005)Li, C., McMahon, C., Newnes, L.: Annotation in Product Lifecycle Management: A Review of Approaches. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 2, pp. 797–806 (2009)Ding, L., Liu, S.: Markup in Engineering Design: A Discourse. Future Internet 2, 74–95 (2010)Patel, M., Ball, A., Ding, L.: Curation and Preservation of CAD Engineering Models in Product Lifecycle Management. In: Conference on Virtual Systems and Multimedia Dedicated to Digital Heritage, University of Bath, pp. 59–66 (2008)Ding, L., Davies, D., McMahon, C.A.: The Integration of Lightweight Representation and Annotation for Collaborative Design Representation. Research in Engineering Design 20(3), 185–200 (2009)Patel, M., Ball, A., Ding, L.: Strategies for the Curation of CAD Engineering Models. International Journal of Digital Curation 4(1), 84–97 (2009)Ganeshan, R., Garrett, J., Finger, S.: A Framework for Representing Design Intent. Design Studies 15(1), 59–84 (1994)Myers, K., Zumel, N., Garcia, P.: Acquiring Design Rationale Automatically. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 14(2), 115–135 (2000)Kunz, W., Rittel, H.: Issues as Elements of Information Systems. Working paper 131. Center for Planning and Development Research, Berkeley (1970)Shum, S.J.B., Selvin, A.M., Sierhuis, M., Conklin, J., Haley, C.B., Nuseibeh, B.: Hypermedia Support for Argumentation-Based Rationale: 15 Years on from Gibis and Qoc. Rationale Management in Software Engineering, 111–132 (2006)Sung, R., Ritchie, J.M., Rea, H.J., Corney, J.: Automated Design Knowledge Capture and Representation in Single-User CAD Environments. J. of Eng. Design 22(7), 487–503 (2011)Chandrasegaran, S.K., Ramani, K., Sriram, R.D., HorvĂĄth, I., Bernard, A., Harik, R.F., Gao, W.: The Evolution, Challenges, and Future of Knowledge Representation in Product Design Systems. Computer-Aided Design 45(2), 204–228 (2013)Ellis, G., Dix, A.: A Taxonomy of Clutter Reduction for Information Visualisation. IEEE Transactions on Visualization and Computer Graphics 13(6), 1216–1223 (2007)Cipriano, G., Gleicher, M.: Text Scaffolds for Effective Surface Labeling. IEEE Transactions on Visualization and Computer Graphics 14(6), 1675–1682 (2008)Stein, T., DĂ©coret, X.: Dynamic Label Placement for Improved Interactive Exploration. In: 6th International Symposium on Non-Photorealistic Animation and Rendering, pp. 15–21 (2008)Götzelmann, T., Hartmann, K., Strothotte, T.: Agent-Based Annotation of Interactive 3D Visualizations. In: Butz, A., Fisher, B., KrĂŒger, A., Olivier, P. (eds.) SG 2006. LNCS, vol. 4073, pp. 24–35. Springer, Heidelberg (2006)Szykman, S., Sriram, R., Regli, W.: The Role of Knowledge in Next-Generation Product Development Systems. J. of Computing and Inf. Science in Engineering 1(1), 3–11 (2001)Aubry, S., Thouvenin, I., Lenne, D., Olive, J.: A Knowledge Model to Read 3D Annotations on a Virtual Mock-up for Collaborative Design. In: 11th International Conference on Computer Supported Cooperative Work in Design, pp. 669–674 (2007)Jung, T., Gross, M.D., Do, E.Y.L.: Sketching Annotations in a 3D Web Environment. In: CHI 2002, Extended Abstracts on Human Factors in Computing Systems, pp. 618–619 (2002)Bilasco, I.M., Gensel, J., Villanova-Oliver, M., Martin, H.: An MPEG-7 Framework Enhancing the Reuse of 3D Models. In: 11th International Conference on 3D Web Technology, Columbia, Maryland (2006)Pittarello, F., De Faveri, A.: Semantic Description of 3D Environments: A Proposal Based on Web Standards. In: 11th International Conference on 3D Web Technology, Columbia, Maryland (2006)Song, H., GuimbretiĂšre, F., Hu, C., Lipson, H.: ModelCraft: Capturing Freehand Annotations and Edits on Physical 3D Models. In: 19th Annual ACM Symposium on User Interface Software and Technology, pp. 13–22 (2006

    Linking design and manufacturing domains via web-based and enterprise integration technologies

    Get PDF
    The manufacturing industry faces many challenges such as reducing time-to-market and cutting costs. In order to meet these increasing demands, effective methods are need to support the early product development stages by bridging the gap of communicating early design ideas and the evaluation of manufacturing performance. This paper introduces methods of linking design and manufacturing domains using disparate technologies. The combined technologies include knowledge management supporting for product lifecycle management (PLM) systems, enterprise resource planning (ERP) systems, aggregate process planning systems, workflow management and data exchange formats. A case study has been used to demonstrate the use of these technologies, illustrated by adding manufacturing knowledge to generate alternative early process plan which are in turn used by an ERP system to obtain and optimise a rough-cut capacity plan

    Support for collaborative component-based software engineering

    Get PDF
    Collaborative system composition during design has been poorly supported by traditional CASE tools (which have usually concentrated on supporting individual projects) and almost exclusively focused on static composition. Little support for maintaining large distributed collections of heterogeneous software components across a number of projects has been developed. The CoDEEDS project addresses the collaborative determination, elaboration, and evolution of design spaces that describe both static and dynamic compositions of software components from sources such as component libraries, software service directories, and reuse repositories. The GENESIS project has focussed, in the development of OSCAR, on the creation and maintenance of large software artefact repositories. The most recent extensions are explicitly addressing the provision of cross-project global views of large software collections and historical views of individual artefacts within a collection. The long-term benefits of such support can only be realised if OSCAR and CoDEEDS are widely adopted and steps to facilitate this are described. This book continues to provide a forum, which a recent book, Software Evolution with UML and XML, started, where expert insights are presented on the subject. In that book, initial efforts were made to link together three current phenomena: software evolution, UML, and XML. In this book, focus will be on the practical side of linking them, that is, how UML and XML and their related methods/tools can assist software evolution in practice. Considering that nowadays software starts evolving before it is delivered, an apparent feature for software evolution is that it happens over all stages and over all aspects. Therefore, all possible techniques should be explored. This book explores techniques based on UML/XML and a combination of them with other techniques (i.e., over all techniques from theory to tools). Software evolution happens at all stages. Chapters in this book describe that software evolution issues present at stages of software architecturing, modeling/specifying, assessing, coding, validating, design recovering, program understanding, and reusing. Software evolution happens in all aspects. Chapters in this book illustrate that software evolution issues are involved in Web application, embedded system, software repository, component-based development, object model, development environment, software metrics, UML use case diagram, system model, Legacy system, safety critical system, user interface, software reuse, evolution management, and variability modeling. Software evolution needs to be facilitated with all possible techniques. Chapters in this book demonstrate techniques, such as formal methods, program transformation, empirical study, tool development, standardisation, visualisation, to control system changes to meet organisational and business objectives in a cost-effective way. On the journey of the grand challenge posed by software evolution, the journey that we have to make, the contributory authors of this book have already made further advances

    A design recording framework to facilitate knowledge sharing in collaborative software engineering

    Get PDF
    This paper describes an environment that allows a development team to share knowledge about software artefacts by recording decisions and rationales as well as supporting the team in formulating and maintaining design constraints. It explores the use of multi-dimensional design spaces for capturing various issues arising during development and presenting this meta-information using a network of views. It describes a framework to underlie the collaborative environment and shows the supporting architecture and its implementation. It addresses how the artefacts and their meta-information are captured in a non-invasive way and shows how an artefact repository is embedded to store and manage the artefacts
    • 

    corecore