1,586 research outputs found

    Ontology-based data semantic management and application in IoT- and cloud-enabled smart homes

    Get PDF
    The application of emerging technologies of Internet of Things (IoT) and cloud computing have increasing the popularity of smart homes, along with which, large volumes of heterogeneous data have been generating by home entities. The representation, management and application of the continuously increasing amounts of heterogeneous data in the smart home data space have been critical challenges to the further development of smart home industry. To this end, a scheme for ontology-based data semantic management and application is proposed in this paper. Based on a smart home system model abstracted from the perspective of implementing users’ household operations, a general domain ontology model is designed by defining the correlative concepts, and a logical data semantic fusion model is designed accordingly. Subsequently, to achieve high-efficiency ontology data query and update in the implementation of the data semantic fusion model, a relational-database-based ontology data decomposition storage method is developed by thoroughly investigating existing storage modes, and the performance is demonstrated using a group of elaborated ontology data query and update operations. Comprehensively utilizing the stated achievements, ontology-based semantic reasoning with a specially designed semantic matching rule is studied as well in this work in an attempt to provide accurate and personalized home services, and the efficiency is demonstrated through experiments conducted on the developed testing system for user behavior reasoning

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    Non-Invasive Ambient Intelligence in Real Life: Dealing with Noisy Patterns to Help Older People

    Get PDF
    This paper aims to contribute to the field of ambient intelligence from the perspective of real environments, where noise levels in datasets are significant, by showing how machine learning techniques can contribute to the knowledge creation, by promoting software sensors. The created knowledge can be actionable to develop features helping to deal with problems related to minimally labelled datasets. A case study is presented and analysed, looking to infer high-level rules, which can help to anticipate abnormal activities, and potential benefits of the integration of these technologies are discussed in this context. The contribution also aims to analyse the usage of the models for the transfer of knowledge when different sensors with different settings contribute to the noise levels. Finally, based on the authors’ experience, a framework proposal for creating valuable and aggregated knowledge is depicted.This research was partially funded by Fundación Tecnalia Research & Innovation, and J.O.-M. also wants to recognise the support obtained from the EU RFCS program through project number 793505 ‘4.0 Lean system integrating workers and processes (WISEST)’ and from the grant PRX18/00036 given by the Spanish Secretaría de Estado de Universidades, Investigación, Desarrollo e Innovación del Ministerio de Ciencia, Innovación y Universidades

    SAMuS : service-oriented architecture for multisensor surveillance in smart homes

    Get PDF
    The design of a service-oriented architecture for multisensor surveillance in smart homes is presented as an integrated solution enabling automatic deployment, dynamic selection, and composition of sensors. Sensors are implemented as Web-connected devices, with a uniform Web API. RESTdesc is used to describe the sensors and a novel solution is presented to automatically compose Web APIs that can be applied with existing Semantic Web reasoners. We evaluated the solution by building a smart Kinect sensor that is able to dynamically switch between IR and RGB and optimizing person detection by incorporating feedback from pressure sensors, as such demonstrating the collaboration among sensors to enhance detection of complex events. The performance results show that the platform scales for many Web APIs as composition time remains limited to a few hundred milliseconds in almost all cases

    Radar for Assisted Living in the Context of Internet of Things for Health and Beyond

    Get PDF
    This paper discusses the place of radar for assisted living in the context of IoT for Health and beyond. First, the context of assisted living and the urgency to address the problem is described. The second part gives a literature review of existing sensing modalities for assisted living and explains why radar is an upcoming preferred modality to address this issue. The third section presents developments in machine learning that helps improve performances in classification especially with deep learning with a reflection on lessons learned from it. The fourth section introduces recent published work from our research group in the area that shows promise with multimodal sensor fusion for classification and long short-term memory applied to early stages in the radar signal processing chain. Finally, we conclude with open challenges still to be addressed in the area and open to future research directions in animal welfare

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    Human activity recognition using multisensor data fusion based on Reservoir Computing

    Get PDF
    Activity recognition plays a key role in providing activity assistance and care for users in smart homes. In this work, we present an activity recognition system that classifies in the near real-time a set of common daily activities exploiting both the data sampled by sensors embedded in a smartphone carried out by the user and the reciprocal Received Signal Strength (RSS) values coming from worn wireless sensor devices and from sensors deployed in the environment. In order to achieve an effective and responsive classification, a decision tree based on multisensor data-stream is applied fusing data coming from embedded sensors on the smartphone and environmental sensors before processing the RSS stream. To this end, we model the RSS stream, obtained from a Wireless Sensor Network (WSN), using Recurrent Neural Networks (RNNs) implemented as efficient Echo State Networks (ESNs), within the Reservoir Computing (RC) paradigm. We targeted the system for the EvAAL scenario, an international competition that aims at establishing benchmarks and evaluation metrics for comparing Ambient Assisted Living (AAL) solutions. In this paper, the performance of the proposed activity recognition system is assessed on a purposely collected real-world dataset, taking also into account a competitive neural network approach for performance comparison. Our results show that, with an appropriate configuration of the information fusion chain, the proposed system reaches a very good accuracy with a low deployment cost
    corecore