8,257 research outputs found

    Architecture, design, and modeling of the OPSnet asynchronous optical packet switching node

    Get PDF
    An all-optical packet-switched network supporting multiple services represents a long-term goal for network operators and service providers alike. The EPSRC-funded OPSnet project partnership addresses this issue from device through to network architecture perspectives with the key objective of the design, development, and demonstration of a fully operational asynchronous optical packet switch (OPS) suitable for 100 Gb/s dense-wavelength-division multiplexing (DWDM) operation. The OPS is built around a novel buffer and control architecture that has been shown to be highly flexible and to offer the promise of fair and consistent packet delivery at high load conditions with full support for quality of service (QoS) based on differentiated services over generalized multiprotocol label switching

    Middeck Active Control Experiment (MACE), phase A

    Get PDF
    A rationale to determine which structural experiments are sufficient to verify the design of structures employing Controlled Structures Technology was derived. A survey of proposed NASA missions was undertaken to identify candidate test articles for use in the Middeck Active Control Experiment (MACE). The survey revealed that potential test articles could be classified into one of three roles: development, demonstration, and qualification, depending on the maturity of the technology and the mission the structure must fulfill. A set of criteria was derived that allowed determination of which role a potential test article must fulfill. A review of the capabilities and limitations of the STS middeck was conducted. A reference design for the MACE test article was presented. Computing requirements for running typical closed-loop controllers was determined, and various computer configurations were studied. The various components required to manufacture the structure were identified. A management plan was established for the remainder of the program experiment development, flight and ground systems development, and integration to the carrier. Procedures for configuration control, fiscal control, and safety, reliabilty, and quality assurance were developed

    Start of SPIDER operation towards ITER neutral beams

    Get PDF
    Heating Neutral Beam (HNB) Injectors will constitute the main plasma heating and current drive tool both in ITER and JT60-SA, which are the next major experimental steps for demonstrating nuclear fusion as viable energy source. In ITER, in order to achieve the required thermonuclear fusion power gain Q=10 for short pulse operation and Q=5 for long pulse operation (up to 3600s), two HNB injectors will be needed [1], each delivering a total power of about 16.5 MW into the magnetically-confined plasma, by means of neutral hydrogen or deuterium particles having a specific energy of about 1 MeV. Since only negatively charged particles can be efficiently neutralized at such energy, the ITER HNB injectors [2] will be based on negative ions, generated by caesium-catalysed surface conversion of atoms in a radio-frequency driven plasma source. A negative deuterium ion current of more than 40 A will be extracted, accelerated and focused in a multi-aperture, multi-stage electrostatic accelerator, having 1280 apertures (~ 14 mm diam.) and 5 acceleration stages (~200 kV each) [3]. After passing through a narrow gas-cell neutralizer, the residual ions will be deflected and discarded, whereas the neutralized particles will continue their trajectory through a duct into the tokamak vessels to deliver the required heating power to the ITER plasma for a pulse duration of about 3600 s. Although the operating principles and the implementation of the most critical parts of the injector have been tested in different experiments, the ITER NBI requirements have never been simultaneously attained. In order to reduce the risks and to optimize the design and operating procedures of the HNB for ITER, a dedicated Neutral Beam Test Facility (NBTF) [4] has been promoted by the ITER Organization with the contribution of the European Union\u2019s Joint Undertaking for ITER and of the Italian Government, with the participation of the Japanese and Indian Domestic Agencies (JADA and INDA) and of several European laboratories, such as IPP-Garching, KIT-Karlsruhe, CCFE-Culham, CEA-Cadarache. The NBTF, nicknamed PRIMA, has been set up at Consorzio RFX in Padova, Italy [5]. The planned experiments will verify continuous HNB operation for one hour, under stringent requirements for beam divergence (< 7 mrad) and aiming (within 2 mrad). To study and optimise HNB performances, the NBTF includes two experiments: MITICA, full-scale NBI prototype with 1 MeV particle energy and SPIDER, with 100 keV particle energy and 40 A current, aiming at testing and optimizing the full-scale ion source. SPIDER will focus on source uniformity, negative ion current density and beam optics. In June 2018 the experimental operation of SPIDER has started

    Precision laser range finder system design for Advanced Technology Laboratory applications

    Get PDF
    Preliminary system design of a pulsed precision ruby laser rangefinder system is presented which has a potential range resolution of 0.4 cm when atmospheric effects are negligible. The system being proposed for flight testing on the advanced technology laboratory (ATL) consists of a modelocked ruby laser transmitter, course and vernier rangefinder receivers, optical beacon retroreflector tracking system, and a network of ATL tracking retroreflectors. Performance calculations indicate that spacecraft to ground ranging accuracies of 1 to 2 cm are possible

    Multi-Objective Synthesis of Filtering Dipole Array Based on Tuning-Space Mapping

    Get PDF
    In the paper, we apply tuning-space mapping to multi-objective synthesis of a filtering antenna. The antenna is going to be implemented as a planar dipole array with serial feeding. Thanks to the multi-objective approach, we can deal with conflicting requirements on gain, impedance matching, side-lobe level, and main-lobe direction. MOSOMA algorithm is applied to compute Pareto front of optimal solutions by changing lengths of dipoles and parameters of transmission lines connecting them into a serial array. Exploitation of tuning space mapping significantly reduces CPU-time demands of the multi-objective synthesis: a coarse optimization evaluates objectives using a wire model of the filtering array (4NEC2, method of moments), and a fine optimization exploits a realistic planar model of the array (CST Microwave Studio, finite integration technique). The synthesized filtering antenna was manufactured, and its parameters were measured to be compared with objectives. The number of dipoles in the array is shown to influence the match of measured parameters and objectives

    Parallel Optical Random Access Memory (PORAM)

    Get PDF
    It is shown that the need to minimize component count, power and size, and to maximize packing density require a parallel optical random access memory to be designed in a two-level hierarchy: a modular level and an interconnect level. Three module designs are proposed, in the order of research and development requirements. The first uses state-of-the-art components, including individually addressed laser diode arrays, acousto-optic (AO) deflectors and magneto-optic (MO) storage medium, aimed at moderate size, moderate power, and high packing density. The next design level uses an electron-trapping (ET) medium to reduce optical power requirements. The third design uses a beam-steering grating surface emitter (GSE) array to reduce size further and minimize the number of components
    corecore