65,747 research outputs found

    A systematic literature review of cloud computing in eHealth

    Full text link
    Cloud computing in eHealth is an emerging area for only few years. There needs to identify the state of the art and pinpoint challenges and possible directions for researchers and applications developers. Based on this need, we have conducted a systematic review of cloud computing in eHealth. We searched ACM Digital Library, IEEE Xplore, Inspec, ISI Web of Science and Springer as well as relevant open-access journals for relevant articles. A total of 237 studies were first searched, of which 44 papers met the Include Criteria. The studies identified three types of studied areas about cloud computing in eHealth, namely (1) cloud-based eHealth framework design (n=13); (2) applications of cloud computing (n=17); and (3) security or privacy control mechanisms of healthcare data in the cloud (n=14). Most of the studies in the review were about designs and concept-proof. Only very few studies have evaluated their research in the real world, which may indicate that the application of cloud computing in eHealth is still very immature. However, our presented review could pinpoint that a hybrid cloud platform with mixed access control and security protection mechanisms will be a main research area for developing citizen centred home-based healthcare applications

    Secure and Trustable Electronic Medical Records Sharing using Blockchain

    Full text link
    Electronic medical records (EMRs) are critical, highly sensitive private information in healthcare, and need to be frequently shared among peers. Blockchain provides a shared, immutable and transparent history of all the transactions to build applications with trust, accountability and transparency. This provides a unique opportunity to develop a secure and trustable EMR data management and sharing system using blockchain. In this paper, we present our perspectives on blockchain based healthcare data management, in particular, for EMR data sharing between healthcare providers and for research studies. We propose a framework on managing and sharing EMR data for cancer patient care. In collaboration with Stony Brook University Hospital, we implemented our framework in a prototype that ensures privacy, security, availability, and fine-grained access control over EMR data. The proposed work can significantly reduce the turnaround time for EMR sharing, improve decision making for medical care, and reduce the overall costComment: AMIA 2017 Annual Symposium Proceeding

    A flexible architecture for privacy-aware trust management

    Get PDF
    In service-oriented systems a constellation of services cooperate, sharing potentially sensitive information and responsibilities. Cooperation is only possible if the different participants trust each other. As trust may depend on many different factors, in a flexible framework for Trust Management (TM) trust must be computed by combining different types of information. In this paper we describe the TAS3 TM framework which integrates independent TM systems into a single trust decision point. The TM framework supports intricate combinations whilst still remaining easily extensible. It also provides a unified trust evaluation interface to the (authorization framework of the) services. We demonstrate the flexibility of the approach by integrating three distinct TM paradigms: reputation-based TM, credential-based TM, and Key Performance Indicator TM. Finally, we discuss privacy concerns in TM systems and the directions to be taken for the definition of a privacy-friendly TM architecture.\u

    Dwarna : a blockchain solution for dynamic consent in biobanking

    Get PDF
    Dynamic consent aims to empower research partners and facilitate active participation in the research process. Used within the context of biobanking, it gives individuals access to information and control to determine how and where their biospecimens and data should be used. We present Dwarna—a web portal for ‘dynamic consent’ that acts as a hub connecting the different stakeholders of the Malta Biobank: biobank managers, researchers, research partners, and the general public. The portal stores research partners’ consent in a blockchain to create an immutable audit trail of research partners’ consent changes. Dwarna’s structure also presents a solution to the European Union’s General Data Protection Regulation’s right to erasure—a right that is seemingly incompatible with the blockchain model. Dwarna’s transparent structure increases trustworthiness in the biobanking process by giving research partners more control over which research studies they participate in, by facilitating the withdrawal of consent and by making it possible to request that the biospecimen and associated data are destroyed.peer-reviewe

    SLIS Student Research Journal, Vol. 5, Iss. 1

    Get PDF

    Audit-based Compliance Control (AC2) for EHR Systems

    Get PDF
    Traditionally, medical data is stored and processed using paper-based files. Recently, medical facilities have started to store, access and exchange medical data in digital form. The drivers for this change are mainly demands for cost reduction, and higher quality of health care. The main concerns when dealing with medical data are availability and confidentiality. Unavailability (even temporary) of medical data is expensive. Physicians may not be able to diagnose patients correctly, or they may have to repeat exams, adding to the overall costs of health care. In extreme cases availability of medical data can even be a matter of life or death. On the other hand, confidentiality of medical data is also important. Legislation requires medical facilities to observe the privacy of the patients, and states that patients have a final say on whether or not their medical data can be processed or not. Moreover, if physicians, or their EHR systems, are not trusted by the patients, for instance because of frequent privacy breaches, then patients may refuse to submit (correct) information, complicating the work of the physicians greatly. \ud \ud In traditional data protection systems, confidentiality and availability are conflicting requirements. The more data protection methods are applied to shield data from outsiders the more likely it becomes that authorized persons will not get access to the data in time. Consider for example, a password verification service that is temporarily not available, an access pass that someone forgot to bring, and so on. In this report we discuss a novel approach to data protection, Audit-based Compliance Control (AC2), and we argue that it is particularly suited for application in EHR systems. In AC2, a-priori access control is minimized to the mere authentication of users and objects, and their basic authorizations. More complex security procedures, such as checking user compliance to policies, are performed a-posteriori by using a formal and automated auditing mechanism. To support our claim we discuss legislation concerning the processing of health records, and we formalize a scenario involving medical personnel and a basic EHR system to show how AC2 can be used in practice. \ud \ud This report is based on previous work (Dekker & Etalle 2006) where we assessed the applicability of a-posteriori access control in a health care scenario. A more technically detailed article about AC2 recently appeared in the IJIS journal, where we focussed however on collaborative work environments (Cederquist, Corin, Dekker, Etalle, & Hartog, 2007). In this report we first provide background and related work before explaining the principal components of the AC2 framework. Moreover we model a detailed EHR case study to show its operation in practice. We conclude by discussing how this framework meets current trends in healthcare and by highlighting the main advantages and drawbacks of using an a-posteriori access control mechanism as opposed to more traditional access control mechanisms
    • …
    corecore