90,260 research outputs found

    The transaction pattern through automating TrAM

    Get PDF
    Transaction Agent Modelling (TrAM) has demonstrated how the early requirements of complex enterprise systems can be captured and described in a lucid yet rigorous way. Using Geerts and McCarthy’s REA (Resource-Events-Agents) model as its basis, the TrAM process manages to capture the ‘qualitative’ dimensions of business transactions and business processes. A key part of the process is automated model-checking, which CG has revealed to be beneficial in this regard. It enables models to retain the high-level business concepts yet providing a formal structure at that high-level that is lacking in Use Cases. Using a conceptual catalogue informed by transactions, we illustrate the automation of a transaction pattern from which further specialisations impart a tested specification for system implementation, which we envisage as a multi-agent system in order to reflect the dynamic world of business activity. It would furthermore be able to interoperate across business domains as they would share the generalised TM as a pattern.</p

    Evaluation of Cognitive Architectures for Cyber-Physical Production Systems

    Full text link
    Cyber-physical production systems (CPPS) integrate physical and computational resources due to increasingly available sensors and processing power. This enables the usage of data, to create additional benefit, such as condition monitoring or optimization. These capabilities can lead to cognition, such that the system is able to adapt independently to changing circumstances by learning from additional sensors information. Developing a reference architecture for the design of CPPS and standardization of machines and software interfaces is crucial to enable compatibility of data usage between different machine models and vendors. This paper analysis existing reference architecture regarding their cognitive abilities, based on requirements that are derived from three different use cases. The results from the evaluation of the reference architectures, which include two instances that stem from the field of cognitive science, reveal a gap in the applicability of the architectures regarding the generalizability and the level of abstraction. While reference architectures from the field of automation are suitable to address use case specific requirements, and do not address the general requirements, especially w.r.t. adaptability, the examples from the field of cognitive science are well usable to reach a high level of adaption and cognition. It is desirable to merge advantages of both classes of architectures to address challenges in the field of CPPS in Industrie 4.0

    Exact Requirements Engineering for Developing Business Process Models

    Full text link
    Process modeling is a suitable tool for improving the business processes. Successful process modeling strongly depends on correct requirements engineering. In this paper, we proposed a combination approach for requirements elicitation for developing business models. To do this, BORE (Business-Oriented Requirements Engineering) method is utilized as the base of our work and it is enriched by the important features of the BDD (Business-driven development) method, in order to make the proposed approach appropriate for modeling the more complex processes. As the main result, our method eventuates in exact requirements elicitation that adapts the customers' needs. Also, it let us avoid any rework in the modeling of process. In this paper, we conduct a case study for the paper submission and publication system of a journal. The results of this study not only give a good experience of real world application of proposed approach on a web-based system, also it approves the proficiency of this approach for modeling the complex systems with many sub-processes and complicated relationships.Comment: (IEEE) 3th International Conference on Web Researc

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    Semantic business process management: a vision towards using semantic web services for business process management

    Get PDF
    Business process management (BPM) is the approach to manage the execution of IT-supported business operations from a business expert's view rather than from a technical perspective. However, the degree of mechanization in BPM is still very limited, creating inertia in the necessary evolution and dynamics of business processes, and BPM does not provide a truly unified view on the process space of an organization. We trace back the problem of mechanization of BPM to an ontological one, i.e. the lack of machine-accessible semantics, and argue that the modeling constructs of semantic Web services frameworks, especially WSMO, are a natural fit to creating such a representation. As a consequence, we propose to combine SWS and BPM and create one consolidated technology, which we call semantic business process management (SBPM

    Criticality analysis for improving maintenance, felling and pruning cycles in power lines

    Get PDF
    16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018 Bergamo, Italy, 11–13 June 2018. Edited by Marco Macchi, László Monostori, Roberto PintoThis paper deals with the process of criticality analysis in overhead power lines, as a tool to improve maintenance, felling & pruning programs. Felling & pruning activities are tasks that utility companies must accomplish to respect the servitudes of the overhead lines, concerned with distances to vegetation, buildings, infrastructures and other networks crossings. Conceptually, these power lines servitudes can be considered as failure modes of the maintainable items under our analysis (power line spans), and the criticality analysis methodology developed, will therefore help to optimize actions to avoid these as other failure modes of the line maintainable items. The approach is interesting, but another relevant contribution of the paper is the process followed for the automation of the analysis. Automation is possible by utilizing existing companies IT systems and databases. The paper explains how to use data located in Enterprise Assets Management Systems, GIS and Dispatching systems for a fast, reliable, objective and dynamic criticality analysis. Promising results are included and also discussions about how this technique may result in important implications for this type of businesse

    The BWS Open Business Enterprise System Architecture

    Get PDF
    Business process management systems play a central role in supporting the business operations of medium and large organizations. This paper analyses the properties current business enterprise systems and proposes a new application type called Open Business Enterprise Sys-tem. A new open system architecture called Business Workflow System is proposed. This ar-chitecture combines the instruments for flexible data management, business process manage-ment and integration into a flexible system able to manage modern business operations. The architecture was validated by implementing it into the DocuMentor platform used by major companies in Romania and US. These implementations offered the necessary data to create and refine an enterprise integration methodology called DM-CPI. The final section of the paper presents the concepts, stages and techniques employed by the methodology.BWL, Workflow, BWS, Evaluation, Open Business Enterprise System, DM-CPI
    corecore