1,269 research outputs found

    Technology of swallowable capsule for medical applications

    Get PDF
    Medical technology has undergone major breakthroughs in recent years, especially in the area of the examination tools for diagnostic purposes. This paper reviews the swallowable capsule technology in the examination of the gastrointestinal system for various diseases. The wireless camera pill has created a more advanced method than many traditional examination methods for the diagnosis of gastrointestinal diseases such as gastroscopy by the use of an endoscope. After years of great innovation, commercial swallowable pills have been produced and applied in clinical practice. These smart pills can cover the examination of the gastrointestinal system and not only provide to the physicians a lot more useful data that is not available from the traditional methods, but also eliminates the use of the painful endoscopy procedure. In this paper, the key state-of-the-art technologies in the existing Wireless Capsule Endoscopy (WCE) systems are fully reported and the recent research progresses related to these technologies are reviewed. The paper ends by further discussion on the current technical bottlenecks and future research in this area

    Frontiers of robotic endoscopic capsules: a review

    Get PDF
    Digestive diseases are a major burden for society and healthcare systems, and with an aging population, the importance of their effective management will become critical. Healthcare systems worldwide already struggle to insure quality and affordability of healthcare delivery and this will be a significant challenge in the midterm future. Wireless capsule endoscopy (WCE), introduced in 2000 by Given Imaging Ltd., is an example of disruptive technology and represents an attractive alternative to traditional diagnostic techniques. WCE overcomes conventional endoscopy enabling inspection of the digestive system without discomfort or the need for sedation. Thus, it has the advantage of encouraging patients to undergo gastrointestinal (GI) tract examinations and of facilitating mass screening programmes. With the integration of further capabilities based on microrobotics, e.g. active locomotion and embedded therapeutic modules, WCE could become the key-technology for GI diagnosis and treatment. This review presents a research update on WCE and describes the state-of-the-art of current endoscopic devices with a focus on research-oriented robotic capsule endoscopes enabled by microsystem technologies. The article also presents a visionary perspective on WCE potential for screening, diagnostic and therapeutic endoscopic procedures

    Acoustic Sensing and Ultrasonic Drug Delivery in Multimodal Theranostic Capsule Endoscopy

    Get PDF
    Video capsule endoscopy (VCE) is now a clinically accepted diagnostic modality in which miniaturized technology, an on-board power supply and wireless telemetry stand as technological foundations for other capsule endoscopy (CE) devices. However, VCE does not provide therapeutic functionality, and research towards therapeutic CE (TCE) has been limited. In this paper, a route towards viable TCE is proposed, based on multiple CE devices including important acoustic sensing and drug delivery components. In this approach, an initial multimodal diagnostic device with high-frequency quantitative microultrasound that complements video imaging allows surface and subsurface visualization and computer-assisted diagnosis. Using focused ultrasound (US) to mark sites of pathology with exogenous fluorescent agents permits follow-up with another device to provide therapy. This is based on an US-mediated targeted drug delivery system with fluorescence imaging guidance. An additional device may then be utilized for treatment verification and monitoring, exploiting the minimally invasive nature of CE. While such a theranostic patient pathway for gastrointestinal treatment is presently incomplete, the description in this paper of previous research and work under way to realize further components for the proposed pathway suggests it is feasible and provides a framework around which to structure further work

    Improved reception of in-body signals by means of a wearable multi-antenna system

    Get PDF
    High data-rate wireless communication for in-body human implants is mainly performed in the 402-405 MHz Medical Implant Communication System band and the 2.45 GHz Industrial, Scientific and Medical band. The latter band offers larger bandwidth, enabling high-resolution live video transmission. Although in-body signal attenuation is larger, at least 29 dB more power may be transmitted in this band and the antenna efficiency for compact antennas at 2.45 GHz is also up to 10 times higher. Moreover, at the receive side, one can exploit the large surface provided by a garment by deploying multiple compact highly efficient wearable antennas, capturing the signals transmitted by the implant directly at the body surface, yielding stronger signals and reducing interference. In this paper, we implement a reliable 3.5 Mbps wearable textile multi-antenna system suitable for integration into a jacket worn by a patient, and evaluate its potential to improve the In-to-Out Body wireless link reliability by means of spatial receive diversity in a standardized measurement setup. We derive the optimal distribution and the minimum number of on-body antennas required to ensure signal levels that are large enough for real-time wireless endoscopy-capsule applications, at varying positions and orientations of the implant in the human body

    Design and Simulation of a Ring-Shaped Linear Array for Microultrasound Capsule Endoscopy

    Get PDF
    Video capsule endoscopy (VCE) has significantly advanced visualization of the gastrointestinal tract (GI tract) since its introduction in the last 20 years. Work is now under way to combine VCE with microultrasound imaging. However, small maximum capsule dimensions, coupled with the electronics required to integrate ultrasound imaging capabilities, pose significant design challenges. This paper describes a simulation process for testing transducer geometries and imaging methodologies to achieve satisfactory imaging performance within the physical limitations of the capsule size and outlines many of the trade-offs needed in the design of this new class of ultrasound capsule endoscopy (USCE) device. A hybrid MATLAB model is described, incorporating KLM circuit elements and digitizing and beamforming elements to render a grey-scale B-mode. This model is combined with a model of acoustic propagation to generate images of point scatterers. The models are used to demonstrate the performance of a USCE transducer configuration comprising a single, unfocused transmit ring of radius 5 mm separated into eight segments for electrical impedance control and a 512-element receive linear array, also formed into a ring. The MATLAB model includes an ultrasonic pulser circuit connected to a piezocrystal composite transmit transducer with a center frequency of 25 MHz. B-scan images are simulated for wire target phantoms, multilayered phantoms, and a gut wall model. To demonstrate the USCE system’s ability to image tissue, a digital phantom was created from single-element ultrasonic transducer scans of porcine small bowel ex vivo obtained at a frequency of 45 MHz

    Endoscopic Tactile Capsule for Non-Polypoid Colorectal Tumour Detection

    Get PDF
    An endoscopic tactile robotic capsule, embedding miniaturized MEMS force sensors, is presented. The capsule is conceived to provide automatic palpation of non-polypoid colorectal tumours during colonoscopy, since it is characterized by high degree of dysplasia, higher invasiveness and lower detection rates with respect to polyps. A first test was performed employing a silicone phantom that embedded inclusions with variable hardness and curvature. A hardness-based classification was implemented, demonstrating detection robustness to curvature variation. By comparing a set of supervised classification algorithms, a weighted 3-nearest neighbor classifier was selected. A bias force normalization model was introduced in order to make different acquisition sets consistent. Parameters of this model were chosen through a particle swarm optimization method. Additionally, an ex-vivo test was performed to assess the capsule detection performance when magnetically-driven along a colonic tissue. Lumps were identified as voltage peaks with a prominence depending on the total magnetic force applied to the capsule. Accuracy of 94 % in hardness classification was achieved, while a 100 % accuracy is obtained for the lump detection within a tolerance of 5 mm from the central path described by the capsule. In real application scenario, we foresee our device aiding physicians to detect tumorous tissues
    • …
    corecore