5,445 research outputs found

    Map++: A Crowd-sensing System for Automatic Map Semantics Identification

    Full text link
    Digital maps have become a part of our daily life with a number of commercial and free map services. These services have still a huge potential for enhancement with rich semantic information to support a large class of mapping applications. In this paper, we present Map++, a system that leverages standard cell-phone sensors in a crowdsensing approach to automatically enrich digital maps with different road semantics like tunnels, bumps, bridges, footbridges, crosswalks, road capacity, among others. Our analysis shows that cell-phones sensors with humans in vehicles or walking get affected by the different road features, which can be mined to extend the features of both free and commercial mapping services. We present the design and implementation of Map++ and evaluate it in a large city. Our evaluation shows that we can detect the different semantics accurately with at most 3% false positive rate and 6% false negative rate for both vehicle and pedestrian-based features. Moreover, we show that Map++ has a small energy footprint on the cell-phones, highlighting its promise as a ubiquitous digital maps enriching service.Comment: Published in the Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (IEEE SECON 2014

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    A preliminary safety evaluation of route guidance comparing different MMI concepts

    Get PDF

    Detection of GSM Based Accident Location, Vehicle Theft and Fuel Theft Using ARM Cortex M-3 Microcontroller

    Get PDF
    In Today's world the amount of vehicle theft, fuel theft and accident of vehicles are increasing day by day. As per the survey made, each year more than a million vehicles are stolen in the U.S (one vehicle every 30 seconds). Vehicle theft occurs not only in metropolitan areas but also it can occur in seedy areas of town. To overcome this limitation, an automotive localization system using GPS and GSM services for the detection of accident location, fuel theft and vehicle theft using ARM Cortex M-3 is proposed. Here, the Vehicle tracking and locking system installed in the vehicle, to track the place and locking engine motor. The place of the vehicle identified using Global Positioning system (GPS) and Global system mobile communication (GSM). These systems constantly watch a moving Vehicle and report the status on demand. When the theft identified, the responsible person send SMS to the ARM Cortex M-3 controller, then controller issue the control signals to stop the engine motor. Authorized person need to send the password to controller to restart the vehicle and open the door which provides more secured, reliable and low cost. The proposed model shows better in its performance

    Embedded response technology and service cloud platform for vehicle information tracking

    Get PDF
    Based on the Indonesia national police crime database, it is reported that vehicle theft cases have increased during the Covid-19 pandemic. The database reported an increasing trend of vehicle theft, 4,065 cases from January 2019 to January 2020 in the province and regency region. Therefore, to help police officers work and minimize the criminal cases of vehicle theft, an effective strategy is needed to reduce these threats. This study proposes implementing SMS and QRcode technology embedded in the vehicle for validation information. Cloud computing capabilities can offer real-time network access to technology resources that can be physically located anywhere geographically based on business needs. This technology can rapidly search and show detailed information regarding the specific vehicle, including the vehicle owner, the vehicle registration number, and the validation of the driver's license. To implement and examine the effectiveness of the proposed technology, this study was conducted an experimental study in a real-world setting from January 2021 until April 2021 in Makassar city, Indonesia. This study concluded that the proposed technology could successfully be implemented and effectively show detailed information regarding the specific vehicle based on the experimental results. This study concluded the potential use of the proposed technology in the real world as an alternative solution to minimize the criminal cases of vehicle theft. It can be used as an alternative solution to reduce the increase in criminal cases of inter-island private vehicle theft syndicates

    A Review Paper on Accident Detection System Using Intelligent Algorithm for VANET

    Get PDF
    Our lives became easier with the Quick accretion of technology and infrastructure. The advent of technology has also rise the traffic hazards and the road accident take place repeatedly which causes massive loss of life and property because of the poor emergency facilities. Recently, intelligent transportation systems (ITS) have emerged as an efficient way of improving interpretation of transportation systems and enhancing travel safety. Accident detection systems are one of the most effective (ITS) tools. The accident detected system which based on Global Positioning System (GPS) and Global System for Mobile communication (GSM) can be accomplish though one or several sensors, the system can gathers the information and coordinates of accident spot then send this data to the rescues services center over a network link in shortest time, It represented as an instance helping system. In this review paper, we proposed an intelligent system that composed of a GPS receiver, Vibration sensor, GSM Modem and integrated with Vehicular AD-Hoc Network (VANET). The employ of (VANET) by enhanced Ad hoc On-Demand Distance Vector protocol (AODV) helps these services in finding the optimum route to the emergency message. The use of GSM, GPS, and VANET technologies allows the system to track vehicle and provides the most instant and accurate information about the vehicle accident spot. Keywords: GPS, GSM, VANET, AODV

    Design and Implementation Of Vehicle Tracking System Using GPS

    Get PDF
    Surveillance system using phone line for security and tracking. Based on the above statement, it is targeted that this project will serve as good indication of how important it is to curb car theft in the country. Surveillance is specified to car alarm system and the means of sending the data to the owner of the vehicle using SMS when the alarm is triggered. Due to the inefficient conventional car security system, the possibility of the car can be stolen is high. The main reason is that the alarm is limited to the audible distance. Somehow if there is another way of transmitting the alarm to the car owner ,tracking the vehicle ,knowing the exactly that the car is been stolen at the same time that is not limited to the audible and line of sight, the system can be upgraded. SMS is a good choice of the communication to replace the conventional alarm, because it can be done and does not require much cost. Although most of people know  GPS can provide more security for the car but the main reason people does not apply it because the cost. Advance car security system is too expensive. Cost for the gadget is too high. Beside that, people also must pay for the service monthly. Tracking systems were first developed for the shipping industry because they wanted to determine where each vehicle was at any given time. Passive systems were developed in the beginning to fulfill these requirements. For the applications which require real time location information of the vehicle, these systems can't be employed because they save the location information in the internal storage and location information can only be accessed when vehicle is available. To achieve automatic Vehicle Location system that can transmit the location information in real time. Active systems are developed. Real time vehicular tracking system incorporates a hardware device installed in the vehicle (In-Vehicle Unit) and a remote Tracking server. The information is transmitted to Tracking server using GSM/GPRS modem on GSM network by using SMS or using direct TCP/IP connection with Tracking server through GPRS. Tracking server also has GSM/GPRS modem that receives vehicle location information via GSM network and stores this information in database. This information is available to authorized users of the system via website over the internet. Keywords: GPS,GPRS,Sensor
    corecore