37 research outputs found

    Design and Implementation of a Full-Duplex Pipelined MAC Protocol for Multihop Wireless Networks

    Get PDF
    In multihop wireless networks, data packets are forwarded from a source node to a destination node through intermediate relay nodes. With half-duplex relay nodes, the end-to-end delay performance of a multihop network degrades as the number of hops increases, because the relay nodes cannot receive and transmit at the same time. Full-duplex relay nodes can reduce their per-hop delay by starting to forward a packet before the whole packet is received. In this paper, we propose a pipelined medium access control (PiMAC) protocol, which enables the relay nodes on a multihop path to simultaneously transmit and receive packets for full-duplex forwarding. For pipelined transmission over a multihop path, it is important to suppress both the self-interference of each relay node with the full-duplex capability and the intra-flow interference from the next relay nodes on the same path. In the PiMAC protocol, each relay node can suppress both the self- and intra-flow interference for full-duplex relaying on the multihop path by estimating the channel coefficients and delays of the interference during a multihop channel acquisition phase. To evaluate the performance of the PiMAC protocol, we carried out extensive simulations and software-defined radio-based experiments

    Link Scheduling Algorithms For In-Band Full-Duplex Wireless Networks

    Get PDF
    In the last two decades, wireless networks and their corresponding data traffic have grown significantly. This is because wireless networks have become an indispens- able and critical communication infrastructure in a modern society. An on-going challenge in communication systems is meeting the continuous increase in traffic de- mands. This is driven by the proliferation of electronic devices such as smartphones with a WiFi interface along with their bandwidth intensive applications. Moreover, in the near future, sensor devices that form the Internet of Things (IoTs) ecosystem will also add to future traffic growth. One promising approach to meet growing traffic demands is to equip nodes with an In-band-Full-Duplex (IBFD) radio. This radio thus allows nodes to transmit and receive data concurrently over the same frequency band. Another approach to in- crease network or link capacity is to exploit the benefits of Multiple-Input-Multiple- Output (MIMO) technologies; namely, (i) spatial diversity gain, which improves Signal-to-Noise Ratio (SNR) and thus has a direct impact on the data rate used by nodes, and (ii) spatial multiplexing gain, whereby nodes are able to form concurrent links to neighbors

    RLT Code Based Handshake-Free Reliable MAC Protocol for Underwater Sensor Networks

    Get PDF
    The characteristics of underwater acoustic channels such as long propagation delay and low bit rate cause the medium access control (MAC) protocols designed for radio channels to either be inapplicable or have low efficiency for underwater sensor networks (UWSNs). Meanwhile, due to high bit error, conventional end-to-end reliable transfer solutions bring about too many retransmissions and are inefficient in UWSN. In this paper, we present a recursive LT (RLT) code. With small degree distribution and recursive encoding, RLT achieves reliable transmission hop-by-hop while reducing the complexity of encoding and decoding in UWSN. We further propose an RLT code based handshake-free (RCHF) reliable MAC protocol. In RCHF protocol, each node maintains a neighbor table including the field of state, and packages are forwarded according to the state of a receiver, which can avoid collisions of sending-receiving and overhearing. The transmission-avoidance time in RCHF decreases data-ACK collision dramatically. Without RTS/CTS handshaking, the RCHF protocol improves channel utilization while achieving reliable transmission. Simulation results show that, compared with the existing reliable data transport approaches for underwater networks, RCHF can improve network throughput while decreasing end-to-end overhead

    Centralized Rate Allocation and Control in 802.11-based Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks (WMNs) built with commodity 802.11 radios are a cost-effective means of providing last mile broadband Internet access. Their multihop architecture allows for rapid deployment and organic growth of these networks. 802.11 radios are an important building block in WMNs. These low cost radios are readily available, and can be used globally in license-exempt frequency bands. However, the 802.11 Distributed Coordination Function (DCF) medium access mechanism does not scale well in large multihop networks. This produces suboptimal behavior in many transport protocols, including TCP, the dominant transport protocol in the Internet. In particular, cross-layer interaction between DCF and TCP results in flow level unfairness, including starvation, with backlogged traffic sources. Solutions found in the literature propose distributed source rate control algorithms to alleviate this problem. However, this requires MAC-layer or transport-layer changes on all mesh routers. This is often infeasible in practical deployments. In wireline networks, router-assisted rate control techniques have been proposed for use alongside end-to-end mechanisms. We evaluate the feasibility of establishing similar centralized control via gateway mesh routers in WMNs. We find that commonly used router-assisted flow control schemes designed for wired networks fail in WMNs. This is because they assume that: (1) links can be scheduled independently, and (2) router queue buildups are sufficient for detecting congestion. These abstractions do not hold in a wireless network, rendering wired scheduling algorithms such as Fair Queueing (and its variants) and Active Queue Management (AQM) techniques ineffective as a gateway-enforceable solution in a WMN. We show that only non-work-conserving rate-based scheduling can effectively enforce rate allocation via a single centralized traffic-aggregation point. In this context we propose, design, and evaluate a framework of centralized, measurement-based, feedback-driven mechanisms that can enforce a rate allocation policy objective for adaptive traffic streams in a WMN. In this dissertation we focus on fair rate allocation requirements. Our approach does not require any changes to individual mesh routers. Further, it uses existing data traffic as capacity probes, thus incurring a zero control traffic overhead. We propose two mechanisms based on this approach: aggregate rate control (ARC) and per-flow rate control (PFRC). ARC limits the aggregate capacity of a network to the sum of fair rates for a given set of flows. We show that the resulting rate allocation achieved by DCF is approximately max-min fair. PFRC allows us to exercise finer-grained control over the rate allocation process. We show how it can be used to achieve weighted flow rate fairness. We evaluate the performance of these mechanisms using simulations as well as implementation on a multihop wireless testbed. Our comparative analysis show that our mechanisms improve fairness indices by a factor of 2 to 3 when compared with networks without any rate limiting, and are approximately equivalent to results achieved with distributed source rate limiting mechanisms that require software modifications on all mesh routers

    Dish networks: Protocols, strategies, analysis, and implementation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Integrating spinal codes into wireless systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 85-88).Rateless spinal codes [47] promise performance gains for future wireless systems. These gains can be realized in the form of higher data rates, longer operational ranges, reduced power consumption, and greater reliability. This is due in part to the manner in which rateless codes exploit the instantaneous characteristics of the wireless medium, including unpredictable fluctuations. By contrast, traditional rated codes can accommodate variability only by making overly conservative assumptions. Before spinal codes reach practical deployment, they must be integrated into the networking stacks of real devices, and they must be instantiated in compact, ecient silicon. This thesis addresses fundamental challenges in each of these two areas, covering a body of work reported in previous publications by this author and others [27, 26]. On the networking side, this thesis explores a rateless analogue of link-layer retransmission schemes, capturing the idea of rate adaptation and generalizing the approach of hybrid ARQ/incremental redundancy systems such as LTE [29]. On the silicon side, this thesis presents the development of a VLSI architecture that exploits the inherent parallelism of the spinal decoder.by Peter Anthony Iannucci.S.M

    Energy Efficiency in Communications and Networks

    Get PDF
    The topic of "Energy Efficiency in Communications and Networks" attracts growing attention due to economical and environmental reasons. The amount of power consumed by information and communication technologies (ICT) is rapidly increasing, as well as the energy bill of service providers. According to a number of studies, ICT alone is responsible for a percentage which varies from 2% to 10% of the world power consumption. Thus, driving rising cost and sustainability concerns about the energy footprint of the IT infrastructure. Energy-efficiency is an aspect that until recently was only considered for battery driven devices. Today we see energy-efficiency becoming a pervasive issue that will need to be considered in all technology areas from device technology to systems management. This book is seeking to provide a compilation of novel research contributions on hardware design, architectures, protocols and algorithms that will improve the energy efficiency of communication devices and networks and lead to a more energy proportional technology infrastructure
    corecore