457 research outputs found

    Ultra-Wideband Secure Communications and Direct RF Sampling Transceivers

    Get PDF
    Larger wireless device bandwidth results in new capabilities in terms of higher data rates and security. The 5G evolution is focus on exploiting larger bandwidths for higher though-puts. Interference and co-existence issues can also be addressed by the larger bandwidth in the 5G and 6G evolution. This dissertation introduces of a novel Ultra-wideband (UWB) Code Division Multiple Access (CDMA) technique to exploit the largest bandwidth available in the upcoming wireless connectivity scenarios. The dissertation addresses interference immunity, secure communication at the physical layer and longer distance communication due to increased receiver sensitivity. The dissertation presents the design, workflow, simulations, hardware prototypes and experimental measurements to demonstrate the benefits of wideband Code-Division-Multiple-Access. Specifically, a description of each of the hardware and software stages is presented along with simulations of different scenarios using a test-bench and open-field measurements. The measurements provided experimental validation carried out to demonstrate the interference mitigation capabilities. In addition, Direct RF sampling techniques are employed to handle the larger bandwidth and avoid analog components. Additionally, a transmit and receive chain is designed and implemented at 28 GHz to provide a proof-of-concept for future 5G applications. The proposed wideband transceiver is also used to demonstrate higher accuracy direction finding, as much as 10 times improvement

    Multi-User Multi-Carrier Differential Chaos Shift Keying Communication System

    Full text link
    In this paper, a multi user Multi-Carrier Differential Chaos Shift Keying (MC-DCSK) modulation is presented. The system endeavors to provide a good trade-off between robustness, energy efficiency and high data rate, while still being simple. In this architecture of MC-DCSK system, for each user, chaotic reference sequence is transmitted over a predefined subcarrier frequency. Multiple modulated data streams are transmitted over the remaining subcarriers allocated for each user. This transmitter structure saves energy and increases the spectral efficiency of the conventional DCSK system.Comment: Accepted in the IEEE International Wireless Communications and Mobile Computing Conference (IWCMC 2013

    Characterization of Ultra Wideband Multiple Access Performance Using Time Hopped-Biorthogonal Pulse Position Modulation

    Get PDF
    The FCC\u27s release of its UWB First Report and Order in April 2002 spawned renewed interest in impulse signaling research. This work combines Time Hopped (TH) multiple access coding with 4-ary UWB Biorthogonal Pulse Position Modulation (TH-BPPM). Multiple access performance is evaluated in a multipath environment for both synchronous and asynchronous networks. Fast time hopping is implemented by replicating and hopping each TH-BPPM symbol NH times. Bit error expressions are derived for biorthogonal TH-BPPM signaling and results compared with previous orthogonal TH-PPM work. Without fast time hopping (NH = 1), the biorthogonal TH-BPPM technique provided gains equivalent to Gray-coded QPSK; improved BER at a given Eb/No and an effective doubling of the data rate. A synchronized network containing up to NT = 15 transmitters yields an average BER improvement (relative to an asynchronous network) of approximately -6.30 dB with orthogonal TH-PPM and approximately 5.9 dB with biorthogonal TH-BPPM. Simulation results indicate that doubling the number of multipath replications (NMP) reduces BER by approximately 3.6 dB. Network performance degrades as NT and NMP increase and synchronized network advantages apparent in the NMP = 0 case diminish with multipath interference present. With fast time hopping (NH \u3e 1) improves BER performance whenever NMP \u3c NH while reducing effective data rate by 1/NH. Compared to the NH = 1 synchronized network, TH-BPPM modulation using NH = 10 provides approximately 5.9 dB improvement at NMP = 0 and approximately 3.6 dB improvement at NMP = 5. At NMP = 10, the BER for the hopped and NH = 1 cases are not statistically different; with NH = 10 hops, BER improvement varies from approximately 0.57 to 0.14 dB (minimal variation between synchronous and asynchronous network performance)

    Ultra-wideband Spread Spectrum Communications using Software Defined Radio and Surface Acoustic Wave Correlators

    Get PDF
    Ultra-wideband (UWB) communication technology offers inherent advantages such as the ability to coexist with previously allocated Federal Communications Commission (FCC) frequencies, simple transceiver architecture, and high performance in noisy environments. Spread spectrum techniques offer additional improvements beyond the conventional pulse-based UWB communications. This dissertation implements a multiple-access UWB communication system using a surface acoustic wave (SAW) correlator receiver with orthogonal frequency coding and software defined radio (SDR) base station transmitter. Orthogonal frequency coding (OFC) and pseudorandom noise (PN) coding provide a means for spreading of the UWB data. The use of orthogonal frequency coding (OFC) increases the correlator processing gain (PG) beyond that of code division multiple access (CDMA); providing added code diversity, improved pulse ambiguity, and superior performance in noisy environments. Use of SAW correlators reduces the complexity and power requirements of the receiver architecture by eliminating many of the components needed and reducing the signal processing and timing requirements necessary for digital matched filtering of the complex spreading signal. The OFC receiver correlator code sequence is hard-coded in the device due to the physical SAW implementation. The use of modern SDR forms a dynamic base station architecture which is able to programmatically generate a digitally modulated transmit signal. An embedded Xilinx Zynq ™ system on chip (SoC) technology was used to implement the SDR system; taking advantage of recent advances in digital-to-analog converter (DAC) sampling rates. SDR waveform samples are generated in baseband in-phase and quadrature (I & Q) pairs and upconverted to a 491.52 MHz operational frequency. The development of the OFC SAW correlator ultimately used in the receiver is presented along with a variety of advanced SAW correlator device embodiments. Each SAW correlator device was fabricated on lithium niobate (LiNbO3) with fractional bandwidths in excess of 20%. The SAW correlator device presented for use in system was implemented with a center frequency of 491.52 MHz; matching SDR transmit frequency. Parasitic electromagnetic feedthrough becomes problematic in the packaged SAW correlator after packaging and fixturing due to the wide bandwidths and high operational frequency. The techniques for reduction of parasitic feedthrough are discussed with before and after results showing approximately 10:1 improvement. Correlation and demodulation results are presented using the SAW correlator receiver under operation in an UWB communication system. Bipolar phase shift keying (BPSK) techniques demonstrate OFC modulation and demodulation for a test binary bit sequence. Matched OFC code reception is compared to a mismatched, or cross-correlated, sequence after correlation and demodulation. Finally, the signal-to-noise power ratio (SNR) performance results for the SAW correlator under corruption of a wideband noise source are presented

    Doctor of Philosophy

    Get PDF
    dissertationA fundamental characteristic of wireless communications is in their broadcast nature, which allows accessibility of information without placing restrictions on a user’s location. However, the ease of accessibility also makes it vulnerable to eavesdropping. This dissertation considers the security issues of spread spectrum systems and in this context, a secure information transmission system compromised of two main parts is presented. The first component makes use of the principle of reciprocity in frequency-selective wireless channels to derive a pair of keys for two legitimate parties. The proposed key generation algorithm allows for two asynchronous transceivers to derive a pair of similar keys. Moreover, a unique augmentation - called strongest path cancellation (SPC) - is applied to the keys and has been validated through simulation and real-world measurements to significantly boost the security level of the design. In the second part of the secure information transmission system, the concept of artificial noise is introduced to multicarrier spread spectrum systems. The keys generated in the first part of the protocol are used as spreading code sequences for the spread spectrum system. Artificial noise is added to further enhance the security of the communication setup. Two different attacks on the proposed security system are evaluated. First, a passive adversary following the same steps as the legitimate users to detect confidential information is considered. The second attack studies a more sophisticated adversary with significant blind detection capabilities

    A 0.18µm CMOS UWB wireless transceiver for medical sensing applications

    Get PDF
    Recently, there is a new trend of demand of a biomedical device that can continuously monitor patient’s vital life index such as heart rate variability (HRV) and respiration rate. This desired device would be compact, wearable, wireless, networkable and low-power to enable proactive home monitoring of vital signs. This device should have a radar sensor portion and a wireless communication link all integrated in one small set. The promising technology that can satisfy these requirements is the impulse radio based Ultra-wideband (IR-UWB) technology. Since Federal Communications Commission (FCC) released the 3.1GHz-10.6GHz frequency band for UWB applications in 2002 [1], IR-UWB has received significant attention for applications in target positioning and wireless communications. IR-UWB employs extremely narrow Gaussian monocycle pulses or any other forms of short RF pulses to represent information. In this project, an integrated wireless UWB transceiver for the 3.1GHz-10.6GHz IR-UWB medical sensor was developed in the 0.18µm CMOS technology. This UWB transceiver can be employed for both radar sensing and communication purposes. The transceiver applies the On-Off Keying (OOK) modulation scheme to transmit short Gaussian pulse signals. The transmitter output power level is adjustable. The fully integrated UWB transceiver occupies a core area of 0.752mm^2 and the total die area of 1.274mm^2 with the pad ring inserted. The transceiver was simulated with overall power consumption of 40mW for radar sensing. The receiver is very sensitive to weak signals with a sensitivity of -73.01dBm. The average power of a single pulse is 9.8µW. The pulses are not posing any harm to human tissues. The sensing resolution and the target positioning precision are presumably sufficient for heart movement detection purpose in medical applications. This transceiver can also be used for high speed wireless data communications. The data transmission rate of 200 Mbps was achieved with an overall power consumption of 57mW. A combination of sensing and communications can be used to build a low power sensor
    • …
    corecore