948 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    SHELDON Smart habitat for the elderly.

    Get PDF
    An insightful document concerning active and assisted living under different perspectives: Furniture and habitat, ICT solutions and Healthcare

    Risk Exposure to Particles – including Legionella pneumophila – emitted during Showering with Water-Saving Showers

    Get PDF
    The increase in legionellosis incidence in the general population in recent years calls for a better characterization of the sources of infection, such as showering. Water-efficient shower systems that use water atomization technology may emit slightly more inhalable bacteria-sized particles than traditional systems, which may increase the risk of users inhaling contaminants associated with these water droplets. To evaluate the risk, the number and mass of inhalable water droplets emitted by twelve showerheads—eight using water-atomization technology and four using continuous-flow technology— were monitored in a shower stall. The water-atomizing showers tested not only had lower flow rates, but also larger spray angles, less nozzles, and larger nozzle diameters than those of the continuous-flow showerheads. A difference in the behavior of inhalable water droplets between the two technologies was observed, both unobstructed or in the presence of a mannequin. The evaporation of inhalable water droplets emitted by the water-atomization showers favored a homogenous distribution in the shower stall. In the presence of the mannequin, the number and mass of inhalable droplets increased for the continuous-flow showerheads and decreased for the water-atomization showerheads. The water-atomization showerheads emitted less inhalable water mass than the continuous-flow showerheads did per unit of time; however, they generally emitted a slightly higher number of inhalable droplets—only one model performed as well as the continuous-flow showerheads in this regard. To specifically assess the aerosolisation rate of bacteria, in particular of the opportunistic water pathogen Legionella pneumophila, during showering controlled experiments were run with one atomization showerhead and one continuous-flow, first inside a glove box, second inside a shower stall. The bioaerosols were sampled with a Coriolis® air sampler and the total number of viable (cultivable and noncultivable) bacteria was determined by flow cytometry and culture. We found that the rate of viable and cultivable Legionella aerosolized from the water jet was similar between the two showerheads: the viable fraction represents 0.02% of the overall bacteria present in water, while the cultivable fraction corresponds to only 0.0005%. The two showerhead models emitted a similar ratio of airborne Legionella viable and cultivable per volume of water used. Similar results were obtained with naturally contaminated hoses tested in shower stall. Therefore, the risk of exposure to Legionella is not expected to increase significantly with the new generation of water-efficient showerheads

    【研究分野別】シーズ集 [英語版]

    Get PDF
    [英語版

    The Potential of ICT in supporting Domiciliary Care in Germany

    Get PDF
    This report documents the findings of the study on the potential of ICT in supporting the provision of domiciliary care, with particular attention to the case of immigrant care workers and informal caregivers in Germany. This country study was launched by JRC-IPTS in 2008 in parallel with two complementary country studies, assessing the situation in Spain and the UK, with the same focus and objectives. All three studies were prompted by the findings of a previous exploratory study on the use of ICT by immigrant care workers in Italy. In Germany, the use of Information Communication Technologies (ICT) for health and social care is playing an increasingly important role in the context of the demographic changes. As, on the one hand, people are getting older and the need for care is increasing, and, on the other hand, the number of formal and informal caregivers is decreasing, technical devices are seen as a possible solution to this dilemma. At the same time, people in need of care and their relatives have a tendency to informally employ private care assistants, often from migrant backgrounds, to assist those in need of care in their homes with daily tasks, so as to avoid and postpone their transferral into institutional care. This report gives an overview on the situation of domiciliary care in Germany, outlining the current use of ICT in home care and by domiciliary caregivers. It investigates the opportunities for ICT in home care and identifies drivers and barriers for the deployment of ICT by caregivers with a particular focus on migrant care assistants. The research undertaken in this and the other national reports is exploratory in nature. The study employs a triangulation of methods, comprising desk-based analysis of existing reports and scientific publications; analysis of information and service web sites; and field work involving direct questioning of experts, service providers, and a sample of carers and care workers, including immigrants.JRC.DG.J.4-Information Societ

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios

    Human Health Engineering Volume II

    Get PDF
    In this Special Issue on “Human Health Engineering Volume II”, we invited submissions exploring recent contributions to the field of human health engineering, i.e., technology for monitoring the physical or mental health status of individuals in a variety of applications. Contributions could focus on sensors, wearable hardware, algorithms, or integrated monitoring systems. We organized the different papers according to their contributions to the main parts of the monitoring and control engineering scheme applied to human health applications, namely papers focusing on measuring/sensing physiological variables, papers highlighting health-monitoring applications, and examples of control and process management applications for human health. In comparison to biomedical engineering, we envision that the field of human health engineering will also cover applications for healthy humans (e.g., sports, sleep, and stress), and thus not only contribute to the development of technology for curing patients or supporting chronically ill people, but also to more general disease prevention and optimization of human well-being

    Digitising the Industry Internet of Things Connecting the Physical, Digital and VirtualWorlds

    Get PDF
    This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: • Introduction• Digitising industry and IoT as key enabler in the new era of Digital Economy• IoT Strategic Research and Innovation Agenda• IoT in the digital industrial context: Digital Single Market• Integration of heterogeneous systems and bridging the virtual, digital and physical worlds• Federated IoT platforms and interoperability• Evolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces.• Innovation through IoT ecosystems• Trust-based IoT end-to-end security, privacy framework• User acceptance, societal, ethical aspects and legal issues• Internet of Things Application

    Ubiquitous Robotics System for Knowledge-based Auto-configuration System for Service Delivery within Smart Home Environments

    Get PDF
    The future smart home will be enhanced and driven by the recent advance of the Internet of Things (IoT), which advocates the integration of computational devices within an Internet architecture on a global scale [1, 2]. In the IoT paradigm, the smart home will be developed by interconnecting a plethora of smart objects both inside and outside the home environment [3-5]. The recent take-up of these connected devices within home environments is slowly and surely transforming traditional home living environments. Such connected and integrated home environments lead to the concept of the smart home, which has attracted significant research efforts to enhance the functionality of home environments with a wide range of novel services. The wide availability of services and devices within contemporary smart home environments make their management a challenging and rewarding task. The trend whereby the development of smart home services is decoupled from that of smart home devices increases the complexity of this task. As such, it is desirable that smart home services are developed and deployed independently, rather than pre-bundled with specific devices, although it must be recognised that this is not always practical. Moreover, systems need to facilitate the deployment process and cope with any changes in the target environment after deployment. Maintaining complex smart home systems throughout their lifecycle entails considerable resources and effort. These challenges have stimulated the need for dynamic auto-configurable services amongst such distributed systems. Although significant research has been directed towards achieving auto-configuration, none of the existing solutions is sufficient to achieve auto-configuration within smart home environments. All such solutions are considered incomplete, as they lack the ability to meet all smart home requirements efficiently. These requirements include the ability to adapt flexibly to new and dynamic home environments without direct user intervention. Fulfilling these requirements would enhance the performance of smart home systems and help to address cost-effectiveness, considering the financial implications of the manual configuration of smart home environments. Current configuration approaches fail to meet one or more of the requirements of smart homes. If one of these approaches meets the flexibility criterion, the configuration is either not executed online without affecting the system or requires direct user intervention. In other words, there is no adequate solution to allow smart home systems to adapt dynamically to changing circumstances, hence to enable the correct interconnections among its components without direct user intervention and the interruption of the whole system. Therefore, it is necessary to develop an efficient, adaptive, agile and flexible system that adapts dynamically to each new requirement of the smart home environment. This research aims to devise methods to automate the activities associated with customised service delivery for dynamic home environments by exploiting recent advances in the field of ubiquitous robotics and Semantic Web technologies. It introduces a novel approach called the Knowledge-based Auto-configuration Software Robot (Sobot) for Smart Home Environments, which utilises the Sobot to achieve auto-configuration of the system. The research work was conducted under the Distributed Integrated Care Services and Systems (iCARE) project, which was designed to accomplish and deliver integrated distributed ecosystems with a homecare focus. The auto-configuration Sobot which is the focus of this thesis is a key component of the iCARE project. It will become one of the key enabling technologies for generic smart home environments. It has a profound impact on designing and implementing a high quality system. Its main role is to generate a feasible configuration that meets the given requirements using the knowledgebase of the smart home environment as a core component. The knowledgebase plays a pivotal role in helping the Sobot to automatically select the most appropriate resources in a given context-aware system via semantic searching and matching. Ontology as a technique of knowledgebase representation generally helps to design and develop a specific domain. It is also a key technology for the Semantic Web, which enables a common understanding amongst software agents and people, clarifies the domain assumptions and facilitates the reuse and analysis of its knowledge. The main advantages of the Sobot over traditional applications is its awareness of the changing digital and physical environments and its ability to interpret these changes, extract the relevant contextual data and merge any new information or knowledge. The Sobot is capable of creating new or alternative feasible configurations to meet the system’s goal by utilising inferred facts based on the smart home ontological model, so that the system can adapt to the changed environment. Furthermore, the Sobot has the capability to execute the generated reconfiguration plan without interrupting the running of the system. A proof-of-concept testbed has been designed and implemented. The case studies carried out have shown the potential of the proposed approach to achieve flexible and reliable auto-configuration of the smart home system, with promising directions for future research

    Building the Hyperconnected Society- Internet of Things Research and Innovation Value Chains, Ecosystems and Markets

    Get PDF
    This book aims to provide a broad overview of various topics of Internet of Things (IoT), ranging from research, innovation and development priorities to enabling technologies, nanoelectronics, cyber-physical systems, architecture, interoperability and industrial applications. All this is happening in a global context, building towards intelligent, interconnected decision making as an essential driver for new growth and co-competition across a wider set of markets. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from research to technological innovation, validation and deployment.The book builds on the ideas put forward by the European Research Cluster on the Internet of Things Strategic Research and Innovation Agenda, and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in future years. The concept of IoT could disrupt consumer and industrial product markets generating new revenues and serving as a growth driver for semiconductor, networking equipment, and service provider end-markets globally. This will create new application and product end-markets, change the value chain of companies that creates the IoT technology and deploy it in various end sectors, while impacting the business models of semiconductor, software, device, communication and service provider stakeholders. The proliferation of intelligent devices at the edge of the network with the introduction of embedded software and app-driven hardware into manufactured devices, and the ability, through embedded software/hardware developments, to monetize those device functions and features by offering novel solutions, could generate completely new types of revenue streams. Intelligent and IoT devices leverage software, software licensing, entitlement management, and Internet connectivity in ways that address many of the societal challenges that we will face in the next decade
    corecore