2,039 research outputs found

    Smartphone-enabled Biotelemetric System For a Smart Contact Lens

    Get PDF
    Diabetes describes a disordered metabolic state with an overabundance of glucose in the bloodstream, due to insu cient production or utilization of insulin to allow tissue cells from consuming glucose. People with unmanaged diabetes could lead to many serious complications such as heart disease, stroke, coma, kidney failure, blindness, amputation, and premature death. Diabetes can be managed by monitoring the blood glucose level, and control the glucose level by taking insulin, and exercising a carefully planned lifestyle with appropriate diet and physical activities. An elegant solution for glucose monitoring is the integration of electrochemical-based glucose sensor and microelectronics within a contact lens, namely a smart contact lens, which can measure the tear glucose in the eye, and correlate it to blood glucose. Currently, there is no functional smart contact lens devices for glucose detection in the market. This thesis focuses on providing proof of concept prototypes for implementing energy harvesting and wireless data transmission on a smart contact lens. An all-in-one solution is proposed to harvest energy from a smartphone, and use the same smartphone to support glucose data extraction by backscattering. The appropriate prototype architectures are justi ed based on a system speci cation estimated from related works. The prototypes are designed in simulation, and then fabricated on PCBs using o -the-shelf components and equipment. Measurements are conducted on the prototypes to evaluate their performance against the initial assessment of requirements from related works

    Mobile Health Technologies

    Get PDF
    Mobile Health Technologies, also known as mHealth technologies, have emerged, amongst healthcare providers, as the ultimate Technologies-of-Choice for the 21st century in delivering not only transformative change in healthcare delivery, but also critical health information to different communities of practice in integrated healthcare information systems. mHealth technologies nurture seamless platforms and pragmatic tools for managing pertinent health information across the continuum of different healthcare providers. mHealth technologies commonly utilize mobile medical devices, monitoring and wireless devices, and/or telemedicine in healthcare delivery and health research. Today, mHealth technologies provide opportunities to record and monitor conditions of patients with chronic diseases such as asthma, Chronic Obstructive Pulmonary Diseases (COPD) and diabetes mellitus. The intent of this book is to enlighten readers about the theories and applications of mHealth technologies in the healthcare domain

    The Emerging Wearable Solutions in mHealth

    Get PDF
    The marriage of wearable sensors and smartphones have fashioned a foundation for mobile health technologies that enable healthcare to be unimpeded by geographical boundaries. Sweeping efforts are under way to develop a wide variety of smartphone-linked wearable biometric sensors and systems. This chapter reviews recent progress in the field of wearable technologies with a focus on key solutions for fall detection and prevention, Parkinson’s disease assessment and cardiac disease, blood pressure and blood glucose management. In particular, the smartphone-based systems, without any external wearables, are summarized and discussed

    ENHANCING KINEMATIC SHOULDER FUNCTION EVALUATION THROUGH A VALID, SIMPLE AND CLINICALLY APPLICABLE SCORE

    Get PDF
    Introduction Controversies surrounding Patient-Reported Outcome Measures (PROMs) and the cumbersome-nature of movement analysis-based (MAB) methods for shoulder function evaluation make the exploration of alternatives needed. Research aimed at the simplification of MAB outcome measures had demonstrated previously that the B-B Score, which relies on two movements only, was valid for out-of-laboratory evaluations of shoulder function. Nevertheless, further investigations were needed to optimise testing procedures, test the B-B Score’s capability of acquisition using a user-friendly device, and critically evaluate its measurement properties in comparison to current methods. Objective The aim of this thesis was to develop and assess the simplest possible MAB shoulder function scoring procedure for clinical measurement. Methods The research included four steps: 1) Optimisation of the B-B Score testing procedure (Phase 1 study [data-driven]), 2) Comparison of measurements using a smartphone or an inertial sensor system (Phase 2 study [data-driven]), 3) Validation in frequentlyoccurring pathologies (rotator cuff conditions, instability, fracture, capsulitis) (Phase 3 study [data-driven]), 4) Benchmarking of the new approach with concurrent MAB outcome measures and PROMs (literature review). Results Amongst the tested methods, the B-B score was optimised by using the mean of three replicates in the computation of the range of accelerations by angular velocities. The comparison of easily-used smartphone and reference device showed non-significant differences and excellent relationships between measurements (Intraclass Correlation Coefficient [ICC=0.97]). The smartphone’s B-B Score intra-rater and inter-rater reliability was excellent (ICC=0.92), but limits of agreement could reach up to ±19.4%. The score was responsive (area under the curve [AUC≄0.70]) and demonstrated excellent discriminative power between patients and controls (AUC≄0.90), except for shoulder instability (AUC=0.67). The correlations with PROMs were moderate to high. The benchmarking established that the measurement properties of the B-B Score compared equivalently with those of PROMs and MAB outcome measures, except for shoulder instability. Conclusion Shoulder function can be efficiently evaluated using a simple scoring procedure performed with a smartphone, which facilitates its objective assessment. Further research is needed to understand how best to reduce the effects of variability associated with single measurements in order to optimise clinical applicability and to explore the B-B Score’s properties in other situations requiring functional assessments of the shoulder. . Keywords: shoulder, shoulder function; outcome assessment; validation studies, reliability and validity; inertial sensors; smartphone sensors; body-worn sensors; kinematics; sensitivity and specificity

    Selected Papers from the 5th International Electronic Conference on Sensors and Applications

    Get PDF
    This Special Issue comprises selected papers from the proceedings of the 5th International Electronic Conference on Sensors and Applications, held on 15–30 November 2018, on sciforum.net, an online platform for hosting scholarly e-conferences and discussion groups. In this 5th edition of the electronic conference, contributors were invited to provide papers and presentations from the field of sensors and applications at large, resulting in a wide variety of excellent submissions and topic areas. Papers which attracted the most interest on the web or that provided a particularly innovative contribution were selected for publication in this collection. These peer-reviewed papers are published with the aim of rapid and wide dissemination of research results, developments, and applications. We hope this conference series will grow rapidly in the future and become recognized as a new way and venue by which to (electronically) present new developments related to the field of sensors and their applications

    Updates of Wearing Devices (WDs) In Healthcare, And Disease Monitoring

    Get PDF
     With the rising pervasiveness of growing populace, aging and chronic illnesses consistently rising medical services costs, the health care system is going through a crucial change from the conventional hospital focused system to an individual-focused system. Since the twentieth century, wearable sensors are becoming widespread in medical care and biomedical monitoring systems, engaging consistent estimation of biomarkers for checking of the diseased condition and wellbeing, clinical diagnostics and assessment in biological fluids like saliva, blood, and sweat. Recently, the improvements have been centered around electrochemical and optical biosensors, alongside advances with the non-invasive monitoring of biomarkers, bacteria and hormones, etc. Wearable devices have created with a mix of multiplexed biosensing, microfluidic testing and transport frameworks incorporated with flexible materials and body connections for additional created wear ability and effortlessness. These wearables hold guarantee and are fit for a higher understanding of the relationships between analyte focuses inside the blood or non-invasive biofluids and feedback to the patient, which is fundamentally significant in ideal finding, therapy, and control of diseases. In any case, cohort validation studies and execution assessment of wearable biosensors are expected to support their clinical acceptance. In the current review, we discussed the significance, highlights, types of wearables, difficulties and utilizations of wearable devices for biological fluids for the prevention of diseased conditions and real time monitoring of human wellbeing. In this, we sum up the different wearable devices that are developed for health care monitoring and their future potential has been discussed in detail

    A personalized support tool for the training of mindful walking: The mobile “MindfulWalk” application

    Get PDF
    Digital health prevention is a trend that becomes increasingly important in various domains. Health insurers crave for effective methods that can be offered to their customers. Moreover, smart mobile devices pose many advantages as they can be easily used in everyday life without being burdensome. Taking these advantages into account, completely new applications become possible. This thesis presents an application that is intended to support users to walk mindfully. It is a mobile personalized tool that senses the walking speed and provides haptic feedback thereof. The procedure of mindful walking, the technical prototype as well as preliminary study results are presented and discussed. The reported user experience and the study result indicate promising perspectives for a tool that supports a mindful walking behavior. Altogether, the use of modern smart mobile device sensors paves the way for useful mobile application in the context of health prevention in particular and health care in general

    Deep and Frequent Phenotyping study protocol: an observational study in prodromal Alzheimer's disease.

    Get PDF
    INTRODUCTION: Recent failures of potential novel therapeutics for Alzheimer's disease (AD) have prompted a drive towards clinical studies in prodromal or preclinical states. However, carrying out clinical trials in early disease stages is extremely challenging-a key reason being the unfeasibility of using classical outcome measures of dementia trials (eg, conversion to dementia) and the lack of validated surrogate measures so early in the disease process. The Deep and Frequent Phenotyping (DFP) study aims to resolve this issue by identifying a set of markers acting as indicators of disease progression in the prodromal phase of disease that could be used as indicative outcome measures in proof-of-concept trials. METHODS AND ANALYSIS: The DFP study is a repeated measures observational study where participants will be recruited through existing parent cohorts, research interested lists/databases, advertisements and memory clinics. Repeated measures of both established (cognition, positron emission tomography (PET) imaging or cerebrospinal fluid (CSF) markers of pathology, structural MRI markers of neurodegeneration) and experimental modalities (functional MRI, magnetoencephalography and/or electroencephalography, gait measurement, ophthalmological and continuous smartphone-based cognitive and other assessments together with experimental CSF, blood, tear and saliva biomarkers) will be performed. We will be recruiting male and female participants aged >60 years with prodromal AD, defined as absence of dementia but with evidence of cognitive impairment together with AD pathology as assessed using PET imaging or CSF biomarkers. Control participants without evidence of AD pathology will be included at a 1:4 ratio. ETHICS AND DISSEMINATION: The study gained favourable ethical opinion from the South Central-Oxford B NHS Research Ethics Committee (REC reference 17/SC/0315; approved on 18 August 2017; amendment 13 February 2018). Data will be shared with the scientific community no more than 1 year following completion of study and data assembly.NIH

    A Feasibility Study of Using Headspace for Mindfulness Among Individuals Undergoing Surgical Repair of the Rotator Cuff

    Get PDF
    Mindfulness-based interventions (MBIs) have been found to help reduce psychological distress and pain in chronic musculoskeletal conditions. However, very limited evidence exists determining the impact of mindfulness on psychological distress and pain in acute musculoskeletal conditions including rotator cuff tears. Among individuals undergoing surgical repair of a rotator cuff tear, it is not clear how mindfulness may be combined with usual care, given the requirement of intense training as part of frequently used MBI protocols. The purpose of the present study was to determine if it was feasible to combine Headspace, a mobile application for mindfulness training that can be used anytime and anywhere, with the usual treatment for a single-tendon rotator cuff repair. One individual was recruited to use Headspace for three weeks, from two weeks before to one week after their rotator cuff surgery. Feasibility of using Headspace was measured in terms of satisfaction in using Headspace and changes in mindfulness across three time points (2 weeks before surgery, 1 week before surgery, and 1 week after surgery). Regarding satisfaction with using Headspace, four main themes emerged including the improved ability to focus and concentrate, manage pain, cope with life stressors and the ability to use the application anytime and anywhere. Regarding mindfulness, scores increased on one facet and decreased in the four other facets of FFMQ-SF. In addition, the participant reported becoming more mindful but still needed more practice with mindfulness. Based on our findings, we concluded that Headspace is an appropriate intervention to include in the treatment of rotator cuff repairs and can lead to the improved ability to concentrate, focus, manage pain, and cope with life stressors. However, given the short duration of the study, it is not clear how Headspace impacted mindfulness. Future studies should be conducted over a longer duration of time to examine the impact of Headspace on a person’s mindfulness from pre-surgery to the end of rehabilitation

    Technological enhancements to optometric clinical tests

    Get PDF
    A sizeable amount of the testing in eye care, requires either the identification of targets such as letters to assess functional vision, or the subjective evaluation of imagery by an examiner. Computers can render a variety of different targets on their monitors and can be used to store and analyse ophthalmic images. However, existing computing hardware tends to be large, screen resolutions are often too low, and objective assessments of ophthalmic images unreliable. Recent advances in mobile computing hardware and computer-vision systems can be used to enhance clinical testing in optometry. High resolution touch screens embedded in mobile devices, can render targets at a wide variety of distances and can be used to record and respond to patient responses, automating testing methods. This has opened up new opportunities in computerised near vision testing. Equally, new image processing techniques can be used to increase the validity and reliability of objective computer vision systems. Three novel apps for assessing reading speed, contrast sensitivity and amplitude of accommodation were created by the author to demonstrate the potential of mobile computing to enhance clinical measurement. The reading speed app could present sentences effectively, control illumination and automate the testing procedure for reading speed assessment. Meanwhile the contrast sensitivity app made use of a bit stealing technique and swept frequency target, to rapidly assess a patient’s full contrast sensitivity function at both near and far distances. Finally, customised electronic hardware was created and interfaced to an app on a smartphone device to allow free space amplitude of accommodation measurement. A new geometrical model of the tear film and a ray tracing simulation of a Placido disc topographer were produced to provide insights on the effect of tear film breakdown on ophthalmic images. Furthermore, a new computer vision system, that used a novel eye-lash segmentation technique, was created to demonstrate the potential of computer vision systems for the clinical assessment of tear stability. Studies undertaken by the author to assess the validity and repeatability of the novel apps, found that their repeatability was comparable to, or better, than existing clinical methods for reading speed and contrast sensitivity assessment. Furthermore, the apps offered reduced examination times in comparison to their paper based equivalents. The reading speed and amplitude of accommodation apps correlated highly with existing methods of assessment supporting their validity. Their still remains questions over the validity of using a swept frequency sine-wave target to assess patient’s contrast sensitivity functions as no clinical test provides the range of spatial frequencies and contrasts, nor equivalent assessment at distance and near. A validation study of the new computer vision system found that the authors tear metric correlated better with existing subjective measures of tear film stability than those of a competing computer-vision system. However, repeatability was poor in comparison to the subjective measures due to eye lash interference. The new mobile apps, computer vision system, and studies outlined in this thesis provide further insight into the potential of applying mobile and image processing technology to enhance clinical testing by eye care professionals
    • 

    corecore