1,862 research outputs found

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Building energy metering and environmental monitoring - A state-of-the-art review and directions for future research

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy consumption and associated greenhouse gas emissions from buildings has acted as a catalyst in the increasing installation of meters and sensors for monitoring energy use and indoor environmental conditions in buildings. This paper reviews the state-of-the-art in building energy metering and environmental monitoring, including their social, economic, environmental and legislative drivers. The integration of meters and sensors with existing building energy management systems (BEMS) is critically appraised, especially with regard to communication technologies and protocols such as ModBus, M-Bus, Ethernet, Cellular, ZigBee, WiFi and BACnet. Findings suggest that energy metering is covered in existing policies and regulations in only a handful of countries. Most of the legislations and policies on energy metering in Europe are in response to the Energy Performance of Buildings Directive (EPBD), 2002/91/EC. However, recent developments in policy are pointing towards more stringent metering requirements in future, moving away from voluntary to mandatory compliance. With regards to metering equipment, significant developments have been made in the recent past on miniaturisation, accuracy, robustness, data storage, ability to connect using multiple communication protocols, and the integration with BEMS and the Cloud – resulting in a range of available solutions, selection of which can be challenging. Developments in communication technologies, in particular in low-power wireless such as ZigBee and Bluetooth LE (BLE), are enabling cost-effective machine to machine (M2M) and internet of things (IoT) implementation of sensor networks. Privacy and data protection, however, remain a concern for data aggregators and end-users. The standardization of network protocols and device functionalities remains an active area of research and development, especially due to the prevalence of many protocols in the BEMS industry. Available solutions often lack interoperability between hardware and software systems, resulting in vendor lock-in. The paper provides a comprehensive understanding of available technologies for energy metering and environmental monitoring; their drivers, advantages and limitations; factors affecting their selection and future directions of research and development – for use a reference, as well as for generating further interest in this expanding research area

    Technical and governance considerations for Advanced Metering Infrastructure/smart meters: technology, security, uncertainty, costs, benefits, and risks

    Get PDF
    The fundamental role of policymakers when considering Advanced Metering Infrastructure (AMI), or 'smart meters for energy and water infrastructure is to investigate a broad range of complex interrelated issues. These include alternative technical and non-technical options and deployment needs, the cost and benefits of the infrastructure (risks and mitigation measures), and the impact of a number of stakeholders: consumers, distributors, retailers, competitive market operators, competing technology companies, etc. The scale and number of potential variables in the AMI space is an almost unprecedented challenge to policymakers, with the anticipation of new ancillary products and services, associated market contestability, related regulatory and policy amendments, and the adequacy of consumer protection, education, and safety considerations requiring utmost due-diligence. Embarking on AMI investment entails significant technical, implementation, and strategic risk for governments and administering bodies, and an active effort is required to ensure AMI governance and planning maximises the potential benefits, and minimise uncertainties, costs, and risks to stakeholders. This work seeks to clarify AMI fundamentals and discusses the technical and related governance considerations from a dispassionate perspective, yet acknowledges many stakeholders tend to dichotomise debate, and obfuscate both advantages and benefits, and the converse

    Real-time Monitoring of Low Voltage Grids using Adaptive Smart Meter Data Collection

    Get PDF

    6LoPLC for smart grid applications

    Get PDF
    © 2015 IEEE. Reliable monitoring, intelligence and control achieved through Information and Communication Technology (ICT) will determine the success of next generation power grid. This paper proposes a Low Power transmission of Internet Protocol version 6 in PLC (6LoPLC) to provide network reliability with acceptable latency in Advanced Metering Infrastructure (AMI). The analysis presented here are preliminary results from an ongoing research that attempts to leverage existing wireless techniques to achieve energy efficiency in PLC. A model was developed using NS-3 to measure and analyze the performance of low-power Narrow Band PLC (NBPLC) in AMI services. Simulation results obtained so far are quite promising

    Asynchronous Sensor System for Collecting Detailed Data on the Environment and Resource Consumption in Smart City

    Full text link
    This article expands on the ideas presented in arXiv:1910.08759. The article demonstrates that within a unified monitoring system, cities can collect not only detailed resource consumption data but also information on the environmental conditions under a common set of rules. A method for constructing asynchronous sensor monitoring systems for controlled parameters in Smart City is proposed. The controlled parameters include: resource consumption in apartment buildings (electricity, cold and hot water, heat, gas); indoor and outdoor air pollution indicators (carbon monoxide, nitrogen oxides, hydrocarbons, dust, heavy metals, radiation levels, etc.); meteorological parameters (air temperature and humidity, atmospheric pressure, wind speed and direction). In an asynchronous sensor monitoring system, an event occurs when the value of a controlled parameter changes by a specified amount. This enables adjusting the granularity of the collected data. More detailed data contains more information and is therefore more valuable. Transitioning from traditional synchronous systems, where the value of a controlled parameter is recorded at set time intervals, to asynchronous systems allows for the abandonment of complex "smart meters" and the use of extremely simple and inexpensive sensors. Standardizing the data transmission protocol for all types of controlled parameters and reducing the cost of the most widespread equipment in the system -- sensors -- leads to lower expenses for creating and operating a monitoring system. Lower costs and increased value of collected data enable the potential opening of a new market -- a market for data on resource consumption and environmental parameters in Smart City, attracting private businesses to this area and accelerating the energy transition towards a global economy with zero greenhouse gas emissions.Comment: 10 pages, 3 figure

    Characteristics features, economical aspects and environmental impacts of gen-4 nuclear power for developing countries

    Get PDF
    The growing demand of energy has delicate the requirement of alternative sources of energies other than fossil fuels. Though renewable energy resources like solar, biomass, hydro and geothermal energy appear as environment friendly, replenishing sources of energy, a comprehensive solution appears far-fetched as far as large scale production and wide-spread dissemination is concerned when long term cost factors are taken into consideration. In this paper, discussions on the advanced fourth generation nuclear power on the basis of environmental contamination, energy security, cost of fossil fuels and electricity generation and have philosophy to the prospects of nuclear power as the ultimate future energy option for the developing countries are done. This study proposes that gen-4 nuclear appears to be a long term environment favorable panacea to the much discoursed problem of energy crisis by maintaining energy security and long term cost concern in developing countries as well as in the whole world. Keywords: Gen-4 nuclear, reactor, kinetics, neutron, delayed neutron, transient

    Learnings from Pilot Implementation of Smart City by a Brazilian Energy Utility

    Get PDF
    This chapter describes the experience acquired during the implementation of a smart grid pilot project in a Brazilian utility. Learnings in the area of smart metering, telecommunication, information systems and project management are presented. A special focus on Brazilian specificities is given as well as on the management of innovative projects
    corecore