2,595 research outputs found

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Q-CSMA: Queue-Length Based CSMA/CA Algorithms for Achieving Maximum Throughput and Low Delay in Wireless Networks

    Full text link
    Recently, it has been shown that CSMA-type random access algorithms can achieve the maximum possible throughput in ad hoc wireless networks. However, these algorithms assume an idealized continuous-time CSMA protocol where collisions can never occur. In addition, simulation results indicate that the delay performance of these algorithms can be quite bad. On the other hand, although some simple heuristics (such as distributed approximations of greedy maximal scheduling) can yield much better delay performance for a large set of arrival rates, they may only achieve a fraction of the capacity region in general. In this paper, we propose a discrete-time version of the CSMA algorithm. Central to our results is a discrete-time distributed randomized algorithm which is based on a generalization of the so-called Glauber dynamics from statistical physics, where multiple links are allowed to update their states in a single time slot. The algorithm generates collision-free transmission schedules while explicitly taking collisions into account during the control phase of the protocol, thus relaxing the perfect CSMA assumption. More importantly, the algorithm allows us to incorporate mechanisms which lead to very good delay performance while retaining the throughput-optimality property. It also resolves the hidden and exposed terminal problems associated with wireless networks.Comment: 12 page

    Application of multiple-wireless to a visual localisation system for emergency services

    Get PDF
    Abstract—In this paper we discuss the application of multiplewireless technology to a practical context-enhanced service system called ViewNet. ViewNet develops technologies to support enhanced coordination and cooperation between operation teams in the emergency services and the police. Distributed localisation of users and mapping of environments implemented over a secure wireless network enables teams of operatives to search and map an incident area rapidly and in full coordination with each other and with a control centre. Sensing is based on fusing absolute positioning systems (UWB and GPS) with relative localisation and mapping from on-body or handheld vision and inertial sensors. This paper focuses on the case for multiple-wireless capabilities in such a system and the benefits it can provide. We describe our work of developing a software API to support both WLAN and TETRA in ViewNet. It also provides a basis for incorporating future wireless technologies into ViewNet. I
    • …
    corecore