634 research outputs found

    A First Practical Fully Homomorphic Crypto-Processor Design: The Secret Computer is Nearly Here

    Get PDF
    Following a sequence of hardware designs for a fully homomorphic crypto-processor - a general purpose processor that natively runs encrypted machine code on encrypted data in registers and memory, resulting in encrypted machine states - proposed by the authors in 2014, we discuss a working prototype of the first of those, a so-called `pseudo-homomorphic' design. This processor is in principle safe against physical or software-based attacks by the owner/operator of the processor on user processes running in it. The processor is intended as a more secure option for those emerging computing paradigms that require trust to be placed in computations carried out in remote locations or overseen by untrusted operators. The prototype has a single-pipeline superscalar architecture that runs OpenRISC standard machine code in two distinct modes. The processor runs in the encrypted mode (the unprivileged, `user' mode, with a long pipeline) at 60-70% of the speed in the unencrypted mode (the privileged, `supervisor' mode, with a short pipeline), emitting a completed encrypted instruction every 1.67-1.8 cycles on average in real trials.Comment: 6 pages, draf

    Public Evidence from Secret Ballots

    Full text link
    Elections seem simple---aren't they just counting? But they have a unique, challenging combination of security and privacy requirements. The stakes are high; the context is adversarial; the electorate needs to be convinced that the results are correct; and the secrecy of the ballot must be ensured. And they have practical constraints: time is of the essence, and voting systems need to be affordable and maintainable, and usable by voters, election officials, and pollworkers. It is thus not surprising that voting is a rich research area spanning theory, applied cryptography, practical systems analysis, usable security, and statistics. Election integrity involves two key concepts: convincing evidence that outcomes are correct and privacy, which amounts to convincing assurance that there is no evidence about how any given person voted. These are obviously in tension. We examine how current systems walk this tightrope.Comment: To appear in E-Vote-Id '1

    ARPA Whitepaper

    Get PDF
    We propose a secure computation solution for blockchain networks. The correctness of computation is verifiable even under malicious majority condition using information-theoretic Message Authentication Code (MAC), and the privacy is preserved using Secret-Sharing. With state-of-the-art multiparty computation protocol and a layer2 solution, our privacy-preserving computation guarantees data security on blockchain, cryptographically, while reducing the heavy-lifting computation job to a few nodes. This breakthrough has several implications on the future of decentralized networks. First, secure computation can be used to support Private Smart Contracts, where consensus is reached without exposing the information in the public contract. Second, it enables data to be shared and used in trustless network, without disclosing the raw data during data-at-use, where data ownership and data usage is safely separated. Last but not least, computation and verification processes are separated, which can be perceived as computational sharding, this effectively makes the transaction processing speed linear to the number of participating nodes. Our objective is to deploy our secure computation network as an layer2 solution to any blockchain system. Smart Contracts\cite{smartcontract} will be used as bridge to link the blockchain and computation networks. Additionally, they will be used as verifier to ensure that outsourced computation is completed correctly. In order to achieve this, we first develop a general MPC network with advanced features, such as: 1) Secure Computation, 2) Off-chain Computation, 3) Verifiable Computation, and 4)Support dApps' needs like privacy-preserving data exchange
    corecore