4,839 research outputs found

    Authentication of Students and Students’ Work in E-Learning : Report for the Development Bid of Academic Year 2010/11

    Get PDF
    Global e-learning market is projected to reach $107.3 billion by 2015 according to a new report by The Global Industry Analyst (Analyst 2010). The popularity and growth of the online programmes within the School of Computer Science obviously is in line with this projection. However, also on the rise are students’ dishonesty and cheating in the open and virtual environment of e-learning courses (Shepherd 2008). Institutions offering e-learning programmes are facing the challenges of deterring and detecting these misbehaviours by introducing security mechanisms to the current e-learning platforms. In particular, authenticating that a registered student indeed takes an online assessment, e.g., an exam or a coursework, is essential for the institutions to give the credit to the correct candidate. Authenticating a student is to ensure that a student is indeed who he says he is. Authenticating a student’s work goes one step further to ensure that an authenticated student indeed does the submitted work himself. This report is to investigate and compare current possible techniques and solutions for authenticating distance learning student and/or their work remotely for the elearning programmes. The report also aims to recommend some solutions that fit with UH StudyNet platform.Submitted Versio

    BIBS: A Lecture Webcasting System

    Get PDF
    The Berkeley Internet Broadcasting System (BIBS) is a lecture webcasting system developed and operated by the Berkeley Multimedia Research Center. The system offers live remote viewing and on-demand replay of course lectures using streaming audio and video over the Internet. During the Fall 2000 semester 14 classes were webcast, including several large lower division classes, with a total enrollment of over 4,000 students. Lectures were played over 15,000 times per month during the semester. The primary use of the webcasts is to study for examinations. Students report they watch BIBS lectures because they did not understand material presented in lecture, because they wanted to review what the instructor said about selected topics, because they missed a lecture, and/or because they had difficulty understanding the speaker (e.g., non-native English speakers). Analysis of various survey data suggests that more than 50% of the students enrolled in some large classes view lectures and that as many as 75% of the lectures are played by members of the Berkeley community. Faculty attitudes vary about the virtues of lecture webcasting. Some question the use of this technology while others believe it is a valuable aid to education. Further study is required to accurately assess the pedagogical impact that lecture webcasts have on student learning

    Developing a telemedical tool for detecting oculomotor dysfunctions

    Get PDF
    As a lot of children have oculomotor dysfunctions without knowing it, a method of efficient screening will help diagnose those suspected of having problems. As it is expensive and time consuming for visual educators or subjects to travel to a location where the examination can be held, Gunnvor Wilhelmsen wished for a better solution. She therefore suggested to continue development of Ruben Watanabe and Mads G. Eide's CAndLook application, which allows for local examinations[9]. The solution Wilhelmsen wanted was an application which could perform examinations without having the visual educator and subject present at the same location. This thesis presents an attempt to develop an application which serves this purpose by using CAndLook as a base. The application was developed with a server working as an intermediated and storage device and two clients, one for the visual educator and one for the subject of the examination. The prototype developed in this projects shows that it is possible for a visual educator and subject to connect to each other and remotely carry out an examination. The results from an examination can also be stored on a remote server for later access and analysis. Although currently being a prototype, the results goes to show that a fully functional telemedical tool for diagnosing oculomotor dysfunction can be developed.Masteroppgave i informatikkINF39

    Explaining student workload : guidance about providing information for students

    Get PDF

    Improving access to ultrasound imaging in northern, remote communities

    Get PDF
    Access to healthcare services—including access to medical imaging—is an important determinant of health outcomes. This thesis aims to improve understanding of and address gaps in access to ultrasound imaging for patients in northern, remote communities, and advance a novel ultrasound technology with the ultimate goal of improving patient care and health outcomes. This thesis first brings greater understanding of patients’ perceptions of access and factors which shape access to ultrasound imaging in northern, remote communities in Saskatchewan, Canada. A qualitative study was performed using interpretive description as a methodological approach and a multi-dimensional conceptualization of access to care as a theoretical framework. The study identified barriers which patients in northern, remote communities face in accessing ultrasound imaging, and demonstrated that geographic remoteness from imaging facilities was a central barrier. To determine whether disparities in access to ultrasound imaging resulted in disparities in utilization of ultrasound services, two population-based studies assessed the association between sociodemographic and geographic factors and obstetrical and non-obstetrical ultrasound utilization in Saskatchewan. In the first study investigating obstetrical ultrasound utilization, multivariate logistic regression analysis demonstrated that women living in rural areas, remote areas, and low income neighbourhoods, as well as status First Nations women, were less likely to have a second trimester ultrasound, an important aspect of prenatal care. In a second study investigating non-obstetrical ultrasound utilization across the entire provincial population, multivariate Poisson regression analysis similarly demonstrated lower rates of non-obstetrical ultrasound utilization among individuals living in rural and remote areas, individuals residing in low income neighbourhoods, and status First Nations persons. To address the barriers which patients in northern, remote communities face in accessing ultrasound imaging and to minimize disparities in ultrasound imaging utilization as identified in previous studies in this thesis, telerobotic ultrasound technology was investigated as a solution to improve access to ultrasound imaging. Using this technology, radiologists and sonographers could remotely manipulate an ultrasound probe via a robotic arm, thereby remotely performing an ultrasound exam while patients remained in their home community. A clinical trial comparing conventional and telerobotic ultrasound approaches was undertaken, validating this technology for obstetrical ultrasound imaging. To determine the feasibility of using telerobotic technology to establish an ultrasound service delivery model to remotely provide diagnostic ultrasound exams in underserved communities, pilot telerobotic ultrasound clinics were developed in three northern, remote communities. Telerobotic ultrasound exams were sufficient for diagnosis in the majority of cases, minimizing travel or reducing wait times for these patients. This technology was subsequently evaluated during a COVID-19 outbreak in northern Saskatchewan, demonstrating the potential of this technology to provide critical ultrasound services to an underserved northern population and minimize health inequities during the COVID-19 pandemic. An economic evaluation was performed to compare a service delivery model using telerobotic ultrasound technology to alternative service delivery models. Telerobotic ultrasound combined with an itinerant sonographer service was found to be the lowest cost option from both a publicly funded healthcare payer perspective and a societal perspective for many northern, remote communities. This thesis provides key insights for health system leaders seeking improved understanding and novel solutions to improve access to ultrasound imaging in northern, remote communities. Findings suggest that telerobotic ultrasound is a viable solution to improve access to ultrasound imaging and reduce costs associated with ultrasound service delivery. Evidence in this thesis may be used to help improve ultrasound services and health equity for patients in underserved northern, remote communities. Continued respectful collaboration with northern, remote, Indigenous peoples and communities will be a critical aspect to ensure that ultrasound services meet community needs

    MILO: Models of innovation in learning online at Key Stage 3 and 14-19: Final report

    Get PDF
    The report presents and analyses eight case studies, which reflect a wide range of models of online learning, each of which has been developed for specific reasons, largely in relation to visions of how technology can transform learning, but also to solve practical problems such as re-engaging disaffected learners and coping with rising pupil numbers

    Computer-vision based method for quantifying rising from chair in Parkinson's disease patients

    Get PDF
    BACKGROUND: The ability to arise from a sitting to a standing position is often impaired in Parkinson's disease (PD). This impairment is associated with an increased risk of falling, and higher risk of dementia. We propose a novel approach to estimate Movement Disorder Society Unified PD Rating Scale (MDS-UPDRS) ratings for “item 3.9” (arising from chair) using a computer vision-based method, whereby we use clinically informed reasoning to engineer a small number of informative features from high dimensional markerless pose estimation data. METHODS: We analysed 447 videos collected via the KELVIN-PDℱ platform, recorded in clinical settings at multiple sites, using commercially available mobile smart devices. Each video showed an examination for item 3.9 of the MDS-UPDRS and had an associated severity rating from a trained clinician on the 5-point scale (0, 1, 2, 3 or 4). The deep learning library OpenPose was used to extract pose estimation key points from each frame of the videos, resulting in time-series signals for each key point. From these signals, features were extracted which capture relevant characteristics of the movement; velocity variation, smoothness, whether the patient used their hands to push themselves up, how stooped the patient was while sitting and how upright the patient was when fully standing. These features were used to train an ordinal classification system (with one class for each of the possible ratings on the UPDRS), based on a series of random forest classifiers. RESULTS: The UPDRS ratings estimated by this system, using leave-one-out cross validation, corresponded exactly to the ratings made by clinicians in 79% of videos, and were within one of those made by clinicians in 100% of cases. The system was able to distinguish normal from Parkinsonian movement with a sensitivity of 62.8% and a specificity of 90.3%. Analysis of misclassified examples highlighted the potential of the system to detect potentially mislabelled data. CONCLUSION: We show that our computer-vision based method can accurately quantify PD patients’ ability to perform the arising from chair action. As far as we are aware this is the first study estimating scores for item 3.9 of the MDS-UPDRS from singular monocular video. This approach can help prevent human error by identifying unusual clinician ratings, and provides promise for such a system being used routinely for clinical assessments, either locally or remotely, with potential for use as stratification and outcome measures in clinical trials

    An evaluation of online proctoring tools

    Get PDF
    COVID'19 is hastening the adoption of online learning and teaching worldwide, and across all levels of education. While many of the typical learning and teaching transactions such as lecturing and communicating are easily handled by contemporary online learning technologies, others, such as assessment of learning outcomes with closed book examinations are fraught with challenges. Among other issues to do with students and teachers, these challenges have to do with the ability of teachers and educational organizations to ensure academic integrity in the absence of a live proctor when an examination is being taken remotely and from a private location. A number of online proctoring tools are appearing on the market that portend to offer solutions to some of the major challenges. But for the moment, they too remain untried and tested on any large scale. This includes the cost of the service and their technical requirements. This paper reports on one of the first attempts to properly evaluate a selection of these tools and offer recommendations for educational institutions. This investigation, which was carried out at the University of the South Pacific, comprised a four-phased approach, starting with desk research that was followed with pilot testing by a group of experts as well as students. The elimination of a tool in every phase was based on the ‘survival of the fittest’ approach with each phase building upon the milestones and deliverables from the previous phase. This paper presents the results of this investigation and discusses its key findings
    • 

    corecore