1,416 research outputs found

    Start-Up of a PID Fuzzy Logic-Embedded Control System for the Speed of a DC Motor Using LabVIEW

    Get PDF
    This work explains the speed control design for a DC motor using fuzzy logic with LabVIEW software. It is also a literature review about the design and the implementation environment and is presented using fuzzy logic to describe the materials and methods used. Various processes on the subject highlight the idea, creation, development, and implementation of intelligent control, and the results considering the application and development for this purpose are presented

    Design and implementation control system for a self-balancing robot based on internet of things by using Arduino microcontroller

    Get PDF
    This project is designed for attempting on developing an autonomous self-balancing robot. In this work, the two-wheel robotic system consists of a microcontroller (Arduino), Dc motor, and sensor. The Arduino is used to read the sensor data and gives the order of the motor based on the control algorithm to remaine the system is stable at different impediment. The robot is drive with Dc motor and the Arduino cannot drive. A motor driver (L298 type) is used to provide a sufficient current. The Ultrasonic sensor (used to sense impediment during the movement) and 3-axis gyroscope accelerometer sensor (To measure the robot inclination angle) to control the two-wheel robot. The controller laws allow reaching static or moving targets based on three structured IOT interactions between the elementary controllers and the sensor with actuator via Cloud environment. Regarding the technical detail must be designed based on the mathematical model. The mathematical model is used based on the model of some references, after that, the transfer function of the system is found. In this work, the MATLAB Simulink is used in the design of the controller, and the PID controller is used due to the simplicity and good activity in central systems. The PID tuner package Simulink is used to obtain the controller parameter (kp, ki, kd) that gives fast and good system response and stability. The result of the designed controller shows that the system has remained stable (remained vertically) and very fast (less than 1sec) until the system reaches the desired output

    Quantum Algorithm of Imperfect KB Self-organization. Pt II: Robotic Control with Remote Knowledge Base Exchange

    Get PDF
    The technology of knowledge base remote design of the smart fuzzy controllers with the application of the "Soft / quantum computing optimizer" toolkit software developed. The possibility of the transmission and communication the knowledge base using remote connection to the control object considered. Transmission and communication of the fuzzy controller’s knowledge bases implemented through the remote connection with the control object in the online mode apply the Bluetooth or WiFi technologies. Remote transmission of knowledge bases allows designing many different built-in intelligent controllers to implement a variety of control strategies under conditions of uncertainty and risk. As examples, two different models of robots described (mobile manipulator and (“cart-pole” system) inverted pendulum). A comparison of the control quality between fuzzy controllers and quantum fuzzy controller in various control modes is presented. The ability to connect and work with a physical model of control object without using than mathematical model demonstrated. The implemented technology of knowledge base design sharing in a swarm of intelligent robots with quantum controllers. It allows to achieve the goal of control and to gain additional knowledge by creating a new quantum hidden information source based on the synergetic effect of combining knowledge. Development and implementation of intelligent robust controller’s prototype for the intelligent quantum control system of mega-science project NICA (at the first stage for the cooling system of superconducted magnets) is discussed. The results of the experiments demonstrate the possibility of the ensured achievement of the control goal of a group of robots using soft / quantum computing technologies in the design of knowledge bases of smart fuzzy controllers in quantum intelligent control systems. The developed software toolkit allows to design and setup complex ill-defined and weakly formalized technical systems on line

    Intelligent control of mobile robot with redundant manipulator & stereovision: quantum / soft computing toolkit

    Get PDF
    The task of an intelligent control system design applying soft and quantum computational intelligence technologies discussed. An example of a control object as a mobile robot with redundant robotic manipulator and stereovision introduced. Design of robust knowledge bases is performed using a developed computational intelligence – quantum / soft computing toolkit (QC/SCOptKBTM). The knowledge base self-organization process of fuzzy homogeneous regulators through the application of end-to-end IT of quantum computing described. The coordination control between the mobile robot and redundant manipulator with stereovision based on soft computing described. The general design methodology of a generalizing control unit based on the physical laws of quantum computing (quantum information-thermodynamic trade-off of control quality distribution and knowledge base self-organization goal) is considered. The modernization of the pattern recognition system based on stereo vision technology presented. The effectiveness of the proposed methodology is demonstrated in comparison with the structures of control systems based on soft computing for unforeseen control situations with sensor system

    Controlador difuso basado en la tabla de bĂşsqueda para controlar el proceso de la sala de vapor

    Get PDF
    Introduction: In this paper, using look-up table control strategy,a fuzzy logic controller is designed for controlling the temperatureof steaming room in terrazzo tile plant corresponding to dedicatedprocess diagrams. Methods: In the proposed method, the temperature and error of temperature are considered as inputs to controlthe duration of valve open time to decrease the activation times ofvalves in order to increase their longevity. The strategy considersan off-line trained look-up table for setting the time of openingvalve in the specific temperature. A fuzzy controller with fifteen extracted rules is designed for controlling the duration of valve opentime. Results: Results show that the number of switching of valvereduces compare to intuitionistic or expert rule extraction. Conclusions: Simulations provide more compatible steaming process routcompare to PID controllers

    Design, Construction, Energy Modeling, and Navigation of a Six-Wheeled Differential Drive Robot to Deliver Medical Supplies inside Hospitals

    Get PDF
    Differential drive mobile robots have been the most ubiquitous kind of robots for the last few decades. As each of the wheels of a differential drive mobile robot can be controlled, it provides additional flexibility to the end-users in creating new applications. These applications include personal assistance, security, warehouse and distribution applications, ocean and space exploration, etc. In a clinic or hospital, the delivery of medicines and patients’ records are frequently needed activities. Medical personnel often find these activities repetitive and time-consuming. Our research was to design, construct, produce an energy model, and develop a navigation control method for a six-wheeled differential drive robot designed to deliver medical supplies inside the hospital. Such a robot is expected to lessen the workload of medical staff. Therefore, the design and implementation of a six-wheeled differential drive robot with a password-protected medicine carrier were presented. This password-protected medicine carrier ensures that only the authorized medical personnel can receive medical supplies. The low-cost robot base and the medicine carrier were built in real life. Besides the actual robot design and fabrication, a kinematic model for the robot was developed, and a navigation control algorithm to avoid obstacles was implemented using MATLAB/Simulink. The kinematic modeling is helpful for the robot to achieve better energy optimization. To develop the object avoidance algorithm, we investigated the use of the Robot Operating System (ROS) and the Simultaneous Localization and Mapping (SLAM) algorithm for the implementation of the mapping and navigation of a robotic platform named TurtleBot 2. Finally, using the Webot robot simulator, the navigation of the six-wheeled mobile robot was demonstrated in a hospital-like simulation environment

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Practical Implementation of Hybrid Energy Systems for Small Loads in Rural South Africa

    Get PDF
    DissertationHybrid renewable energy systems (HRESs), are alternative off-grid methods of generating power to remote rural areas, where power lines are not economically viable. Most of the research studies on renewable hybrid systems or microgrids (MGs) in South Africa, focus mainly on the optimal sizing and optimal control of different systems, by making use of renewable energy simulation softwares, however, there is a lack of research carried out on the implementation of these hybrid systems in real time. The aim is to develop a real time control method for an isolated hybrid system submitted to a variable load, as well as resources. The first step towards achieving this aim, was to critically review available published research works, to describe recent developments in improving the optimum operating concept of microgrid controllers for stand-alone or grid-connected systems. Secondly, to investigate any real-time implementation established by either hierarchical or distributed control. Then to, analyze their reliability and functionality in practical set up of the controller, in managing power in the system to the variable load. The study provided a brief overview of microgrid prototype systems, microgrid controls, operating modes and multi-DER microgrid types built into a hybrid system, which introduces a number of strategies or techniques for managing remote rural application prototypes in an isolated or grid-connected system. However, hierarchical control was found to be more appropriate for large microgrids with multiple types of distributed energy resources (DERs), compared to distributed control, particularly when combined with energy storage systems (ESSs), in isolated mode. The rising of hybrid system controllers in real-time renewable energy for the optimum energy management system (EMS), required the design of a real-time controller to operate the entire system in real time. Increasing popularity of renewable energy (RE) has a control strategy that determined the overall efficiency of the hybrid system (HS), although the energy management system of these systems is particularly complex to be managed. The study's main contribution is to investigate the feasible controller and, later, to present an advanced control strategy for managing and controlling the flow of hybrid renewable energy with a diesel generator (DG) and battery (BT) as a backup in a rural application of SA. EMS would be implemented, using a fuzzy logic controller (FLC) in MATLAB / SIMULINK. This study analysed input and output variables for the design of a controller, with a set of rules and a three-dimension (3D) surface. Simulation results of related studies with different objectives were analysed, with the aim of sussing out an appropriate controller for the current study. Arduino Mega was used for coding and uploaded to the implementation of practical implementation of the study. The system operated successfully by supplying the load. This study finally answered the question of the feasibility of the controller in real-time applications
    • …
    corecore