9,072 research outputs found

    Computer hardware and software for robotic control

    Get PDF
    The KSC has implemented an integrated system that coordinates state-of-the-art robotic subsystems. It is a sensor based real-time robotic control system performing operations beyond the capability of an off-the-shelf robot. The integrated system provides real-time closed loop adaptive path control of position and orientation of all six axes of a large robot; enables the implementation of a highly configurable, expandable testbed for sensor system development; and makes several smart distributed control subsystems (robot arm controller, process controller, graphics display, and vision tracking) appear as intelligent peripherals to a supervisory computer coordinating the overall systems

    Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications

    Get PDF
    The second-generation hybrid and Electric Vehicles are currently leading the paradigm shift in the automobile industry, replacing conventional diesel and gasoline-powered vehicles. The Battery Management System is crucial in these electric vehicles and also essential for renewable energy storage systems. This review paper focuses on batteries and addresses concerns, difficulties, and solutions associated with them. It explores key technologies of Battery Management System, including battery modeling, state estimation, and battery charging. A thorough analysis of numerous battery models, including electric, thermal, and electro-thermal models, is provided in the article. Additionally, it surveys battery state estimations for a charge and health. Furthermore, the different battery charging approaches and optimization methods are discussed. The Battery Management System performs a wide range of tasks, including as monitoring voltage and current, estimating charge and discharge, equalizing and protecting the battery, managing temperature conditions, and managing battery data. It also looks at various cell balancing circuit types, current and voltage stressors, control reliability, power loss, efficiency, as well as their advantages and disadvantages. The paper also discusses research gaps in battery management systems.publishedVersio

    Exploring Computing Continuum in IoT Systems: Sensing, Communicating and Processing at the Network Edge

    Get PDF
    As Internet of Things (IoT), originally comprising of only a few simple sensing devices, reaches 34 billion units by the end of 2020, they cannot be defined as merely monitoring sensors anymore. IoT capabilities have been improved in recent years as relatively large internal computation and storage capacity are becoming a commodity. In the early days of IoT, processing and storage were typically performed in cloud. New IoT architectures are able to perform complex tasks directly on-device, thus enabling the concept of an extended computational continuum. Real-time critical scenarios e.g. autonomous vehicles sensing, area surveying or disaster rescue and recovery require all the actors involved to be coordinated and collaborate without human interaction to a common goal, sharing data and resources, even in intermittent networks covered areas. This poses new problems in distributed systems, resource management, device orchestration,as well as data processing. This work proposes a new orchestration and communication framework, namely CContinuum, designed to manage resources in heterogeneous IoT architectures across multiple application scenarios. This work focuses on two key sustainability macroscenarios: (a) environmental sensing and awareness, and (b) electric mobility support. In the first case a mechanism to measure air quality over a long period of time for different applications at global scale (3 continents 4 countries) is introduced. The system has been developed in-house from the sensor design to the mist-computing operations performed by the nodes. In the second scenario, a technique to transmit large amounts of fine-time granularity battery data from a moving vehicle to a control center is proposed jointly with the ability of allocating tasks on demand within the computing continuum

    Electric vehicle charging and routing management via multi-infrastructure data fusion

    Get PDF
    The introduction of Electric Vehicles (EVs) has placed a strain on the aged and already overworked electrical grid. With each EV requiring the same amount of power as 3 to 140 single family homes, depending on how fast the charge occurs, measures need to be taken in order to protect the electrical grid from serious damage. The electric grid renovations proposed by the U.S. department of energy, commonly referred to as the smart grid, could help accommodate an even greater EV penetration. The introduction of the smart grid and other cutting-edge technologies create the potential for applications which provide new consumer conveniences and aid in the preservation of the electrical grid. This thesis aims to create one such application through the production of a prototype system which takes advantage of current and in-development technologies in order to route an electric vehicle to the closest and least detrimental charge station based on current conditions. Traffic conditions are assessed based on data collected from both ITSs (Intelligent Transportation Systems) and VANETs (Vehicle Ad-hoc Networks), while grid information is gathered through the early stages of the Smart Grid. The system is hosted in a cloud environment base on the current trend of offloading Information Technology systems to the cloud ; this also allows for the advantages of a shared data space between sub-systems. As part of the thesis the prototype system was put through a stress test in a simulated environment in order to both establish system requirements and determine scalability for use with larger maps. The system requirements were compared with the technical specifications of an off-the-shelf GPS routing device. It was determined that such a device could not handle routing with such extensive underlying data, and will require hosting the prototype in a cloud environment. The system was also used to perform a case study on charging station placement in the Greater Rochester area. It was determined that the current charging stations are insufficient for a significant number of electric vehicles and that adding even six stations would provide a greater EV operational area and provide a more uniform distribution of charging station usage

    An integrated approach to planning charging infrastructure for battery electric vehicles

    Get PDF
    PhD ThesisBattery electric vehicles (BEVs) could break our dependence on fossil fuels by facilitating the transition to low carbon and efficient transport and power systems. Yet, BEV market share is under 1% and there are several barriers to adoption including the lack of charging infrastructure. This work revealed insights that could inform planning an appropriate charging infrastructure to support the transition towards BEVs. The insights were based on analysis of a comprehensive dataset collected from three early, real world demonstrators in the UK on BEVs and smart grids. The BEV participants had access and used home, work and public charging infrastructure including fast chargers (50 kW). Probabilistic methods were used to combine and analyse the datasets to ensure robustness of findings. The findings confirm that it is essential to consider a new refuelling paradigm for BEV charging infrastructure and not replicate the liquid-fuel infrastructure where all demand is met at public fuelling stations in a very short period of time. BEVs could be charged where they are routinely parked for long periods of time (i.e. home, work) and meet most of the charging needs of drivers. Installing slow charging infrastructure at home and work would be less expensive and less complicated than rolling-out a ubiquitous fast charging infrastructure to meet all charging needs. In addition, ensuring that cars are connected most of the time to the electricity network allows proper management of BEV charging demand. This could support reliable and efficient operation of the power system to minimise network upgrade costs. Finally, when slow charging infrastructure is neither available nor practical to meet charging needs, fast chargers can be used to fill in this gap. Analysing data of BEV drivers with access to private charging locations, the findings show that fast chargers become more important than slow chargers for daily journeys above 240km and could help overcome perceived and actual range barriers. An appropriate infrastructure takes an integrated approach encompassing BEV drivers’ requirements and the characteristics of the distribution networks where BEV charging infrastructure is connected. A non-integrated approach to delivering a charging infrastructure could impede the transition towards BEVs. The findings of this work could support on-going policy development in the UK and are crucial to planning national charging infrastructure to support the adoption of BEVs in a cost-optimal manner

    Enabling Technologies for Smart Grid Integration and Interoperability of Electric Vehicles

    Get PDF

    Multi-Level Data-Driven Battery Management: From Internal Sensing to Big Data Utilization

    Get PDF
    Battery management system (BMS) is essential for the safety and longevity of lithium-ion battery (LIB) utilization. With the rapid development of new sensing techniques, artificial intelligence and the availability of huge amounts of battery operational data, data-driven battery management has attracted ever-widening attention as a promising solution. This review article overviews the recent progress and future trend of data-driven battery management from a multi-level perspective. The widely-explored data-driven methods relying on routine measurements of current, voltage, and surface temperature are reviewed first. Within a deeper understanding and at the microscopic level, emerging management strategies with multi-dimensional battery data assisted by new sensing techniques have been reviewed. Enabled by the fast growth of big data technologies and platforms, the efficient use of battery big data for enhanced battery management is further overviewed. This belongs to the upper and the macroscopic level of the data-driven BMS framework. With this endeavor, we aim to motivate new insights into the future development of next-generation data-driven battery management

    Modelling of the Electric Vehicle Charging Infrastructure as Cyber Physical Power Systems: A Review on Components, Standards, Vulnerabilities and Attacks

    Full text link
    The increasing number of electric vehicles (EVs) has led to the growing need to establish EV charging infrastructures (EVCIs) with fast charging capabilities to reduce congestion at the EV charging stations (EVCS) and also provide alternative solutions for EV owners without residential charging facilities. The EV charging stations are broadly classified based on i) where the charging equipment is located - on-board and off-board charging stations, and ii) the type of current and power levels - AC and DC charging stations. The DC charging stations are further classified into fast and extreme fast charging stations. This article focuses mainly on several components that model the EVCI as a cyberphysical system (CPS)

    Impact of vehicle to grid in the power system dynamic behaviour

    Get PDF
    This work was supported in part by FCT-Fundação para a Ciência e a Tecnologia de Portugal, under the grant SFRH/BD/47973/2008 and within the framework of the Project "Green Island" with the Reference MIT-PT/SES-GI/0008/2008, by the European Commission within the framework of the European Project MERGE - Mobile Energy Resources in Grids of Electricity, contract nr. 241399 (FP7) and by INESC Porto - Instituto de Engenharia de Sistemas e Computadores do PortoTese de doutoramento. Sistemas Sustentáveis de Energia. Universidade do Porto. Faculdade de Engenharia. 201
    • …
    corecore