3,494 research outputs found

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    BRAHMS: Novel middleware for integrated systems computation

    Get PDF
    Biological computational modellers are becoming increasingly interested in building large, eclectic models, including components on many different computational substrates, both biological and non-biological. At the same time, the rise of the philosophy of embodied modelling is generating a need to deploy biological models as controllers for robots in real-world environments. Finally, robotics engineers are beginning to find value in seconding biomimetic control strategies for use on practical robots. Together with the ubiquitous desire to make good on past software development effort, these trends are throwing up new challenges of intellectual and technological integration (for example across scales, across disciplines, and even across time) - challenges that are unmet by existing software frameworks. Here, we outline these challenges in detail, and go on to describe a newly developed software framework, BRAHMS. that meets them. BRAHMS is a tool for integrating computational process modules into a viable, computable system: its generality and flexibility facilitate integration across barriers, such as those described above, in a coherent and effective way. We go on to describe several cases where BRAHMS has been successfully deployed in practical situations. We also show excellent performance in comparison with a monolithic development approach. Additional benefits of developing in the framework include source code self-documentation, automatic coarse-grained parallelisation, cross-language integration, data logging, performance monitoring, and will include dynamic load-balancing and 'pause and continue' execution. BRAHMS is built on the nascent, and similarly general purpose, model markup language, SystemML. This will, in future, also facilitate repeatability and accountability (same answers ten years from now), transparent automatic software distribution, and interfacing with other SystemML tools. (C) 2009 Elsevier Ltd. All rights reserved

    New sensorless, efficient optimized and stabilized V/f control for PMSM machines

    Get PDF
    With the rapid advances in power electronics and motor drive technologies in recent decades, permanent magnet synchronous machines (PMSM) have found extensive applications in a variety of industrial systems due to its many desirable features such as high power density, high efficiency, and high torque to current ratio, low noise, and robustness. In low dynamic applications like pumps, fans and compressors where the motor speed is nearly constant, usage of a simple control algorithm that can be implemented with least number of the costly external hardware can be highly desirable for industry. In recent published works, for low power PMSMs, a new sensorless volts-per-hertz (V/f) controlling method has been proposed which can be used for PMSM drive applications where the motor speed is constant. Moreover, to minimize the cost of motor implementation, the expensive rotor damper winding was eliminated. By removing the damper winding, however, instability problems normally occur inside of the motor which in some cases can be harmful for a PMSM drive. As a result, to address the instability issue, a stabilizing loop was developed and added to the conventional V/f. By further studying the proposed sensorless stabilized V/f, and calculating power loss, it became known that overall motor efficiency still is needed to be improved and optimized. This thesis suggests a new V/f control method for PMSMs, where both efficiency and stability problems are addressed. Also, although in nearly all recent related research, methods have been applied to low power PMSM, for the first time, in this thesis, the suggested method is implemented for a medium power 15 kW PMSM. A C2000 F2833x Digital Signal Processor (DSP) is used as controller part for the student custom built PMSM drive, but instead of programming the DSP in Assembly or C, the main control algorithm was developed in a rapid prototype software environment which here Matlab Simulink embedded code library is used --Abstract, page iii

    A test-rig to evaluate a dual-3-phase induction motor drive

    Get PDF
    The potential advantages of multi-phase solutions over the conventional 3-phase ones have been widely described in the literature. However, their feasibilities and performances have been poorly described and proven. The main goal of this paper is the design and implementation of a test rig to evaluate some control policies for a double-3-phase induction motor drive, a multiphase drive with interest in Electric Vehicle (EV) applications

    FPGA design methodology for industrial control systems—a review

    Get PDF
    This paper reviews the state of the art of fieldprogrammable gate array (FPGA) design methodologies with a focus on industrial control system applications. This paper starts with an overview of FPGA technology development, followed by a presentation of design methodologies, development tools and relevant CAD environments, including the use of portable hardware description languages and system level programming/design tools. They enable a holistic functional approach with the major advantage of setting up a unique modeling and evaluation environment for complete industrial electronics systems. Three main design rules are then presented. These are algorithm refinement, modularity, and systematic search for the best compromise between the control performance and the architectural constraints. An overview of contributions and limits of FPGAs is also given, followed by a short survey of FPGA-based intelligent controllers for modern industrial systems. Finally, two complete and timely case studies are presented to illustrate the benefits of an FPGA implementation when using the proposed system modeling and design methodology. These consist of the direct torque control for induction motor drives and the control of a diesel-driven synchronous stand-alone generator with the help of fuzzy logic

    Mechatronic Tools for the Modeling and Design of Servo Motor Actuated Belt Driven Motion Systems

    Get PDF
    Mechatronics is defined as the synergistic integration of physical systems, electronics, controls, and computers through the design process, from the very start of the design process, thus enabling complex decision making. This definition reveals the elements involved yet it eludes to the complexity and the constant balance of tradeoffs which are prevalent in the context of applying Mechatronics to a successful design process. This work pursues the use of various tools for the application of Mechatronics to the modeling and design of a servo motor driven motion system. The use of Mechatronics is pervasive in and among today\u27s highly integrated devices and systems. By virtue of the fact that the phrase Mechatronics may carry different meaning depending upon ones discipline or industry, the most general definition is sought and embodied within the work. An overview of the relevant discipline specific perspectives is offered; as sufficient background for the systems modeling and analysis presented. In the course of developing and applying a Mechatronics design process for servo motor actuated motion systems, the use of frequency response analysis and alternative modeling techniques is emphasized, not only as a tool for understanding and applying the matter but, also for the purposes of model verification. These efforts culminate in the design and testing of a physical realization of one of the models presented; the servo motor actuated compliant belt system with compliance and friction. The results of this work underscore the notion that using a Mechatronics design process while devising a servo motor driven motion system enables optimization and functionality not otherwise realizable. These results are supported with experimental verification and comparison. The implications of this work are threefold: the work equips the Mechatronics practitioner with the tools required for verification of the results of modeling and analysis, the work provides an upgrade to the tools and equipment available in the College of Engineering at Marquette University, and the work will likely inspire additional related projects

    Design of One Dimensional Adjustment Platform Servo Control System Based on Neural Network

    Get PDF
    This paper designed a one dimensional adjustment of high precision servo control system, in order to provide individual comprehensive combat system high precision gun visual Angle. In servo control system hardware design based on DSP digital signal processing (DSP) chip as the CPU control circuit, in regard to algorithm, using the three layers BP neural network algorithm for PID integral gain and differential gain and intelligently adjusting proportion gain. On this basis, also analyzes the advantages and disadvantages of the traditional BP neural network algorithm, carries on the improvement. Vector using adaptive control, numerical optimization and introducing the steepness factor method, solve the contradiction between the stability and learning time, greatly improving the convergence speed and stability of the system performance, the static stability of the turntable accuracy is less than 3″, indicators reached the design requirements

    Application of DSP in Power Conversion Systems — A Practical Approach for Multiphase Drives

    Get PDF
    Digital Signal Processing is not a recent research field, but has become a powerful technology to solve engineering problems in the last few decades due to the introduction by Texas Instruments in 1982 of the Digital Signal Processor. Fast digital signal processors have quickly become a cornerstone of high-performance electrical drives, where power electronic conversion systems have heavy online computation burdens and must be controlled using complex control algorithms. In this sense, multiphase drives represent a particularly interesting case of study, where the computational cost highly increases with each extra phase. This technology has been recognized in recent times as an attractive electrical drive due to its usefulness in traction, more-electric aircraft applications and wind power generation systems. However, the complexity of the required control algorithms and signal processing techniques notably increases in relation with conventional three-phase drives. This chapter makes a revision of the necessities of a high-performance multiphase drive from the digital signal processing perspective. One of the most powerful Texas Instruments’ digital signal processor (TMS320F28335) is used, and specific control algorithms, electronic circuits and acquisition processing methods are designed, implemented and analyzed to show its interest in the development of a high-performance multiphase drive

    Efficient Embedded Hardware Architecture for Stabilised Tracking Sighting System of Armoured Fighting Vehicles

    Get PDF
    A line-of-sight stabilised sighting system, capable of target tracking and video stabilisation is a prime requirement of any armoured fighting tank vehicle for military surveillance and weapon firing. Typically, such sighting systems have three prime electro-optical sensors i.e. day camera for viewing in day conditions, thermal camera for night viewing and eye-safe laser range finder for obtaining the target range. For laser guided missile firing, additional laser target designator may be a part of sighting system. This sighting system provides necessary parameters for the fire control computer to compute ballistic offsets to fire conventional ammunition or fire missile. System demands simultaneous interactions with electro-optical sensors, servo sensors, actuators, multi-function display for man-machine interface, fire control computer, logic controller and other sub-systems of tank. Therefore, a complex embedded electronics hardware is needed to respond in real time for such system. An efficient electronics embedded hardware architecture is presented here for the development of this type of sighting system. This hardware has been developed around SHARC 21369 processor and FPGA. A performance evaluation scheme is also presented for this sighting system based on the developed hardware

    FPGA Operating System for Hard Real Time Applications

    Get PDF
    In mechatronics, as in many others fields, one of the main aspect is the prototyping. Since the mechatronics covers a lot of complex applications, the availability of a common digital platform to use in all of them is a valid help in the prototyping phase of the project. FPGAs are often used as software acceleration in reconfigurable computers (RC), in which the operating system is a standard off-the-shelf real time operating system such as Linux and VxWorks. The object of the first part of the work is to develop a hardware operating system for mechatronic applications, which means that the FPGA device does not host a soft core processor, able to execute one only operation at a time, but it executes many concurrent hard real time functions allowing the user to develop his own application code taking advantage of the main features of the device: concurrency, flexibility and determinism. The second part of the thesis is related to the project of an electronic module that integrates logic and power devices to drive piezoelectric stack actuators and demonstrate experimentally the results in terms of control of piezoelectric stack tip displacement on atest bench. The electronic module controls up to four piezoelectric stack actuators and guarantees that the correct tip displacement is reached starting from a desired profile. The various opening/closing phases of the actuators are tuned in terms of slew rate, timings and values to reach during all the controlled phase. The control parameters are passed to the control unit by means of a host human machine interface or by an external electronic control unit that acts as a supervisor. This part will illustrate all the passages of the design starting from the constitutive equations of the piezoelectric material up to the final architecture of the control law and implementation passing through: • creation of a FEM model of the piezoelectric stack; • construction of the modal residues model; • FEM model validation; • identification of the electrical equivalent circuit of the piezoelectric stack; • design of the power driver circuit; • design of the control loops; A complete model validation is then performed and experimental results are presente
    • …
    corecore