107,951 research outputs found

    Global Teamwork: A Study of Design Learning in Collaborative Virtual Environments

    Get PDF
    With the recent developments in communication and information technologies, using Collaborative Virtual Environments (CVEs) in design activity has experienced a remarkable increase. In this paper we present a collaborative learning activity between the University of Sydney (USYD), and the Istanbul Technical University (ITU). This paper shares our teaching experience and discusses the principles of collaborative design learning in virtual environments. Followed by a study on students’ perception on the courses and collaborative learning in both universities, this paper also suggests future refinements on the course structure and the main areas of collaborative design learning. Keywords: Collaborative Design; Collaborative Virtual Environments; Design Teaching And Learning</p

    Using mobile group dynamics and virtual time to improve teamwork in large-scale collaborative virtual environments

    Get PDF
    Mobile group dynamics (MGDs) assist synchronous working in collaborative virtual environments (CVEs), and virtual time (VT) extends the benefits to asynchronous working. The present paper describes the implementation of MGDs (teleporting, awareness and multiple views) and VT (the utterances of 23 previous users were embedded in a CVE as conversation tags), and their evaluation using an urban planning task. Compared with previous research using the same scenario, the new MGD techniques produced substantial increases in the amount that, and distance over which, participants communicated. With VT participants chose to listen to a quarter of the conversations of their predecessors while performing the task. The embedded VT conversations led to a reduction in the rate at which participants traveled around, but an increase in live communication that took place. Taken together, the studies show how CVE interfaces can be improved for synchronous and asynchronous collaborations, and highlight possibilities for future research

    Constructing a Virtual Training Laboratory Using Intelligent Agents

    No full text
    This paper reports on the results and experiences of the Trilogy project; a collaborative project concerned with the development of a virtual research laboratory using intelligence agents. This laboratory is designed to support the training of research students in telecommunications traffic engineering. Training research students involves a number of basic activities. They may seek guidance from, or exchange ideas with, more experienced colleagues. High quality academic papers, books and research reports provide a sound basis for developing and maintaining a good understanding of an area of research. Experimental tools enable new ideas to be evaluated, and hypotheses tested. These three components-collaboration, information and experimentation- are central to any research activity, and a good training environment for research should integrate them in a seamless fashion. To this end, we describe the design and implementation of an agent-based virtual laboratory

    Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics

    Full text link
    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailed description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics

    CyberLiveApp: a secure sharing and migration approach for live virtual desktop applications in a cloud environment

    Get PDF
    In recent years we have witnessed the rapid advent of cloud computing, in which the remote software is delivered as a service and accessed by users using a thin client over the Internet. In particular, the traditional desktop application can execute in the remote virtual machines without re-architecture providing a personal desktop experience to users through remote display technologies. However, existing cloud desktop applications mainly achieve isolation environments using virtual machines (VMs), which cannot adequately support application-oriented collaborations between multiple users and VMs. In this paper, we propose a flexible collaboration approach, named CyberLiveApp, to enable live virtual desktop applications sharing based on a cloud and virtualization infrastructure. The CyberLiveApp supports secure application sharing and on-demand migration among multiple users or equipment. To support VM desktop sharing among multiple users, a secure access mechanism is developed to distinguish view privileges allowing window operation events to be tracked to compute hidden window areas in real time. A proxy-based window filtering mechanism is also proposed to deliver desktops to different users. To support application sharing and migration between VMs, we use the presentation streaming redirection mechanism and VM cloning service. These approaches have been preliminary evaluated on an extended MetaVNC. Results of evaluations have verified that these approaches are effective and useful

    Cross-middleware Interoperability in Distributed Concurrent Engineering

    No full text
    Secure, distributed collaboration between different organizations is a key challenge in Grid computing today. The GDCD project has produced a Grid-based demonstrator Virtual Collaborative Facility (VCF) for the European Space Agency. The purpose of this work is to show the potential of Grid technology to support fully distributed concurrent design, while addressing practical considerations including network security, interoperability, and integration of legacy applications. The VCF allows domain engineers to use the concurrent design methodology in a distributed fashion to perform studies for future space missions. To demonstrate the interoperability and integration capabilities of Grid computing in concurrent design, we developed prototype VCF components based on ESA’s current Excel-based Concurrent Design Facility (a non-distributed environment), using a STEP-compliant database that stores design parameters. The database was exposed as a secure GRIA 5.1 Grid service, whilst a .NET/WSE3.0-based library was developed to enable secure communication between the Excel client and STEP database

    Application of a virtual scientific experiment model in different educational contexts

    No full text
    E-learning practice is continuously using experimentation in order to enhance the basic information transfer model where knowledge is passed from the system/ tutors to the students. Boosting student productivity through on-line experimentation is not simple since many organizational, educational and technological issues need to be dealt with. This work describes the application of a Learning Model for Virtual Scientific Experiments (VSEs) in two different scenarios: Information and Communication Technologies and Physics. As part of the first, a VSE for Wireless Sensor Networks was specified and deployed while the second involved the specification and design of a collaborative VSE for physics experiments. Preliminary implementation and deployment results are also discussed
    • …
    corecore